首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new bichromophoric dyad based on an alkyl-functionalized aminonaphthalimide as energy-donor chromophore and [Ru(dcbpy)2(acac)]Cl (dcbpy=4,4'-dicarboxybipyridine, acac=acetylacetonato) as energy acceptor and sensitizing chromophore is synthesized. Efficient quenching of the donor-chromophore emission is observed in solution, presumably due to resonant energy transfer. This dyad is then used as a sensitizer in a dye solar cell. By comparing the spectral properties of transparent dye solar cells sensitized with the dyad and [Ru(dcbpy)2(acac)]Cl, it is possible to demonstrate that photons absorbed by the donor moiety also contribute significantly to the generation of current. Instead of using acceptor luminescence as a probe, enhanced photocurrent generation is employed to estimate the energy-transfer efficiency. Fitting theoretical to experimental external quantum efficiency functions gives a value for the energy-transfer efficiency of 85 %. Evaluation of the maximum output power of dye solar cells sensitized with the dyad and [Ru(dcbpy)2(acac)]Cl showed, under selective illumination at the absorption maximum of the donor chromophore, that the introduction of the energy-donor moiety leads to a significant increase in the monochromatic maximum output power under blue illumination. This result demonstrates the usefulness of energy transfer for the generation of current in dye-sensitized solar cells.  相似文献   

2.
Porphyrin and fullerene donor-acceptor complexes have been extensively studied for their photo-induced charge transfer characteristics. We present the electronic structure of ground states and a few charge transfer excited states of four cofacial porphyrin-fullerene molecular constructs studied using density functional theory at the all-electron level using large polarized basis sets. The donors are base and Zn-tetraphenyl porphyrins and the acceptor molecules are C(60) and C(70). The complexes reported here are non-bonded with a face-to-face distance between the porphyrin and the fullerene of 2.7 to 3.0 A?. The energies of the low lying excited states including charge transfer states calculated using our recent excited state method are in good agreement with available experimental values. We find that replacing C(60) by C(70) in a given dyad may increase the lowest charge transfer excitation energy by about 0.27 eV. Variation of donor in these complexes has marginal effect on the lowest charge transfer excitation energy. The interfacial dipole moments and lowest charge transfer states are studied as a function of face-to-face distance.  相似文献   

3.
A self-assembled supramolecular triad as a model to mimic the light-induced events of the photosynthetic antenna-reaction center, that is, ultrafast excitation transfer followed by electron transfer ultimately generating a long-lived charge-separated state, has been accomplished. Boron dipyrrin (BDP), zinc porphyrin (ZnP) and fullerene (C(60)), respectively, constitute the energy donor, electron donor and electron acceptor segments of the antenna-reaction center imitation. Unlike in the previous models, the BDP entity was placed between the electron donor, ZnP and electron acceptor, C(60) entities. For the construction, benzo-18-crown-6 functionalized BDP was synthesized and subsequently reacted with 3,4-dihydroxyphenyl functionalized ZnP through the central boron atom to form the crown-BDP-ZnP dyad. Next, an alkyl ammonium functionalized fullerene was used to self-assemble the crown ether entity of the dyad via ion-dipole interactions. The newly formed supramolecular triad was fully characterized by spectroscopic, computational and electrochemical methods. Steady-state fluorescence and excitation studies revealed the occurrence of energy transfer upon selective excitation of the BDP in the dyad. Further studies involving the pump-probe technique revealed excitation transfer from the (1)BDP* to ZnP to occur in about 7 ps, much faster than that reported for other systems in this series of triads, as a consequence of shorter distance between the entities. Upon forming the supramolecular triad by self-assembling fullerene, the (1)ZnP(*) produced by direct excitation or by energy transfer mechanism resulted in an initial electron transfer to the BDP entity. The charge recombination resulted in the population of the triplet excited state of C(60), from where additional electron transfer occurred to produce C(60)(?-):crown-BDP-ZnP(?+) ion pair as the final charge-separated species. Nanosecond transient absorption studies revealed the lifetime of the charge-separated state to be ~100 μs, the longest ever reported for this type of antenna-reaction center mimics, indicating better charge stabilization as a result of the different disposition of the entities of the supramolecular triad.  相似文献   

4.
[structure: see text] We successfully synthesized the axially substituted titanium Pc-C(60) dyad with a convenient method that improves on the traditional asymmetrical phthalocyanine routine to covalently linked phthalocyanines with other functional molecules. The intramolecular photoinduced process between phthalocyanine donor and fullerene acceptor was preliminarily studied.  相似文献   

5.
A sophisticated model of the natural light-harvesting antenna has been devised by decorating a C(60) hexa-adduct with ten yellow and two blue boron dipyrromethene (Bodipy) dyes in such a way that the dyes retain their individuality and assist solubility of the fullerene. Unusually, the fullerene core is a poor electron acceptor and does not enter into light-induced electron-transfer reactions with the appended dyes, but ineffective electronic energy transfer from the excited-state dye to the C(60) residue competes with fluorescence from the yellow dye. Intraparticle electronic energy transfer from yellow to blue dyes can be followed by steady-state and time-resolved fluorescence spectroscopy and by excitation spectra for isolated C(60) nanoparticles dissolved in dioxane at 293 K and at 77 K. The decorated particles can be loaded into polymer films by spin coating from solution. In the dried film, efficient energy transfer occurs such that photons absorbed by the yellow dye are emitted by the blue dye. Films can also be prepared to contain C(60) nanoparticles loaded with the yellow Bodipy dye but lacking the blue dye and, under these circumstances, electronic energy migration occurs between yellow dyes appended to the same nanoparticle and, at higher loading, to dye molecules on nearby particles. Doping these latter polymer films with the mixed-dye nanoparticle coalesces these multifarious processes in a single system. Thus, long-range energy migration occurs among yellow dyes attached to different particles before trapping at a blue dye. In this respect, the film resembles the natural photosynthetic light-harvesting complexes, albeit at much reduced efficacy. The decorated nanoparticles sensitize amorphous silicon photocells.  相似文献   

6.
A high potential donor–acceptor dyad composed of zinc porphyrin bearing three meso‐pentafluorophenyl substituents covalently linked to C60, as a novel dyad capable of generating charge‐separated states of high energy (potential) has been developed. The calculated energy of the charge‐separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin–fullerene dyad. Intramolecular photoinduced electron transfer leading to charge‐separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto‐ to nanosecond transient absorption techniques. The high energy stored in the form of charge‐separated states along with its persistence of about 50–60 ns makes this dyad a potential electron‐transporting catalyst to carry out energy‐demanding photochemical reactions. This type of high‐energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light‐to‐fuel products.  相似文献   

7.
UV-Vis spectroscopic investigations of electron donor-acceptor complexes of [60]- and [70]fullerenes with a well-known laser dye, viz., 4,4-difluoro-1,3,5,7,8-pentamethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indecene (PM567), are reported in toluene solutions. Absorption bands due to charge transfer (CT) transitions have been located in the visible region. The vertical ionization potential of PM567 has been determined utilizing Mulliken’s equation. A possible mechanism for the interaction between the electronic subsystems of [60]- and [70]fullerenes with PM567 is discussed. Oscillator strengths, resonance energies and electronic coupling elements of the CT complexes were estimated. Formation constant data and ab initio calculations suggest that PM567 binds more tightly with [60]fullerene compared to [70]fullerene.  相似文献   

8.
A polyhedral oligomeric silsesquioxane-[60]fullerene (POSS-C60) dyad was designed and used as a novel electron acceptor for bulk heterojunction (BHJ) polymer solar cells (PSCs) with an inverted device configuration. The studies of time-resolved photoinduced absorption of the pristine thin film of poly[(4,4’-bis(2-ethylhexyl)dithieno[3,2-b:2’,3’-d]silole)-2,6-diyl-alt-(4,7-bis (2-thienyl)-2,1,3-benzothiadiazole)-5,5’-diyl] (SiPCPDTBT) and the composite thin film of SiPCPDTBT:POSS-C60 indicated efficient electron transfer from SiPCPDTBT to POSS-C60 with inhibited back-transfer. BHJ PSCs made by SiPCPDTBT mixed with POSS-C60 yielded the power conversion efficiencies (PCEs) of 1.50%. Under the same operational conditions, PCEs observed from BHJ PSCs made by SiPCPDTBT mixed with [6,6]-phenyl-C61-butyric acid methyl ester were 0.92%. These results demonstrated that POSS-C60 is a potentially good electron acceptor for inverted BHJ PSCs.  相似文献   

9.
A novel core–shell structured columnar liquid crystal composed of a donor‐acceptor dyad of tetraphenoxy perylene bisimide (PBI), decorated with four bithiophene units on the periphery, was synthesized. This molecule self‐assembles in solution into helical J‐aggregates guided by π–π interactions and hydrogen bonds which organize into a liquid‐crystalline (LC) columnar hexagonal domain in the solid state. Donor and acceptor moieties exhibit contrasting exciton coupling behavior with the PBIs’ (J‐type) transition dipole moment parallel and the bithiophene side arms’ (H‐type) perpendicular to the columnar axis. The dyad shows efficient energy and electron transfer in solution as well as in the solid state. The synergy of photoinduced electron transfer (PET) and charge transport along the narcissistically self‐assembled core–shell structure enables the implementation of the dye in two‐contact photoconductivity devices giving rise to a 20‐fold increased photoresponse compared to a reference dye without bithiophene donor moieties.  相似文献   

10.
We have investigated electron donor-acceptor complexes of [70]fullerene with various polyaromatic molecules (PAM) with different vertical ionization potentials (I(D)(v)). Well defined charge transfer (CT) absorption bands have been located in the visible region. We extract degrees of charge transfer, oscillator and transition dipole strengths by analyzing the transition energy of the CT band as a function of I(D)(v) of the donors studied. The experimental results were explained using a theoretical model that takes into account the interaction between electronic subsystems of PAM with [70]fullerene. Trends in the formation constant for the [70]fullerene/PAM complexes were discussed in terms of enthalpies and entropies of formation.  相似文献   

11.
New [60]fullerene-perylene-3,4:9,10-bis(dicarboximide) dyads 1 and 2 are described in the search of an energy transfer from the dye as a photoactive antenna to the fullerene moiety.  相似文献   

12.
A fullerene derivative (5) in which a dinuclear ruthenium complex is covalently linked to a fulleropyrrolidine (FP) through a rigid spacer has been prepared through azomethine ylide cycloaddition to C60. Electrochemical and photophysical studies revealed that ground-state electronic interactions between the bimetallic ruthenium chromophore and the FP moiety are small. The absorption spectrum of 5 displays a metal-to-ligand charge transfer (MLCT) transition at about 620 nm in CH2Cl2 which is shifted by nearly 160 nm relative to that of a previously reported mononuclear dyad (8). The photophysical investigations have also shown that both in dichloromethane and acetonitrile the photoexcited MLCT state of dyad 5 transforms into the fullerene triplet excited state with a quantum yield of 0.19 and that, contrary to mononuclear dyad 8, electron transfer, if any under the applied conditions, is negligible relative to energy transfer.  相似文献   

13.
A 'molecular clip' featuring a near-IR emitting fluorophore, BF(2)-chelated tetraarylazadipyrromethane (aza-BODIPY) covalently linked to two porphyrins (MP, M = 2H or Zn) has been newly synthesized to host a three-dimensional electron acceptor fullerene via a 'two-point' metal-ligand axial coordination. Efficient singlet-singlet excitation transfer from (1)ZnP* to aza-BODIPY was witnessed in the dyad and triad in nonpolar and less polar solvents, such as toluene and o-dichlorobenzene, however, in polar solvents, additional electron transfer occurred along with energy transfer. A supramolecular tetrad was formed by assembling bis-pyridine functionalized fullerene via a 'two-point' metal-ligand axial coordination, and the resulted complex was characterized by optical absorption and emission, computational, and electrochemical methods. Electron transfer from photoexcited zinc porphyrin to C(60) is witnessed in the supramolecular tetrad from the femtosecond transient absorption spectral studies. Further, the supramolecular polyads (triad or tetrad) were utilized to build photoelectrochemical cells to check their ability to convert light into electricity by fabricating FTO/SnO(2)/polyad electrodes. The presence of azaBODIPY and fullerene entities of the tetrad improved the overall light energy conversion efficiency. An incident photon-to-current conversion efficiency of up to 17% has been achieved for the tetrad modified electrode.  相似文献   

14.
Supramolecular complexes of [60]- and [70]fullerenes with various meso-tetraphenylporphyrins in toluene solutions have been studied by electronic absorption spectroscopy. Charge transfer (CT) absorption bands are observed in the visible region. Vertical ionization potentials (I D V) of the meso-tetraphenylporphyrins are reported from a study of EDA interaction of these porphyrins with a number of electron acceptors like o-chloranil, p-chloranil, 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and vitamin K. The dependence of the CT transition energy on the donor ionization potential has been utilized to estimate the vertical electron affinities (E A V) of [60]- and [70]fullerenes in solution. The value of E A V for [60]fullerene is found to be 0.10 eV lower in magnitude than that of [70]fullerene. We have extracted degrees of CT, and oscillator and transition dipole strengths of the fullerenes/meso-tetraphenylporphyrins complexes. The experimental results show that the CT complexes studied here have a neutral character in their ground states. Electronic coupling elements have been determined for fullerene/meso-tetraphenylporphyrin complexes. Values of the solvent reorganization energy indicate that the electron transfer process takes place at a faster rate in the case of [70]fullerene/meso-tetraphenylporphyrin complexes.  相似文献   

15.
In the search for intramolecular energy and electron transfer phenomena in [ 60 ] fullerene donor-containing molecules, some electron donor fragments have been covalently linked to the fullerene core. [1 ~4] Only in very fewcases has reliable evidence of thermal or photoinduced intramolecular electron transfer processes been reported. [5]With the aim of promoting an intramolecular electron transfer we sought to develop a novel type of 6-chlorophenazine derivative of [60]fullerene in which the 6-chloro-phenazine core is directly attached by two σ-bonds to the ball giving rise to a different and more rigid spatial orientation of the HOMO of the 6-chloro-phenazine addend with respect to the LUMO of [60]fullerene.  相似文献   

16.
《Chemical physics》2007,336(1):1-13
The phenothiazine–phenylene–isoalloxazine dyad, 3-methyl-10-[4-(10-heptyl-10H-phenothiazin-3-yl)-phenyl]-10H-benzo[g]pteridine-2,4-dione, dissolved in either dichloromethane or acetonitrile is characterized by absorption and emission spectroscopy. Absorption cross-section spectra, stimulated emission cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are determined. The fluorescence decay is determined by time-resolved measurements. The dye photo-stability is investigated by observation of absorption spectral changes due to prolonged blue-light excitation. The absorption spectrum of the dyad resembles the superposition of the absorption of the isoalloxazine (flavin) moiety and of the phenylphenothiazine moiety. Photo-excitation of the flavin moiety causes fluorescence quenching by ground-state reductive electron transfer from phenylphenothiazine to isoalloxazine followed by charge recombination. Photo-excitation of the phenothiazine moiety causes (i) efficient excited-state oxidative electron transfer from phenothiazine to isoalloxazine with successive recombination, and (ii) moderate energy transfer followed by ground-state phenothiazine electron transfer and recombination.  相似文献   

17.
18.
A dyad built up of a zinc(II) porphyrin and the corresponding free base, [Zn‐Fb] , fused to N‐heterocyclic carbene (NHCs) ligands, respectively acting as singlet energy donor and acceptor, and a bridging trans‐PdI2 unit, along with the corresponding [Zn‐Zn] and [Fb‐Fb] dimers were prepared and investigated by absorption and emission spectroscopy and density functional computations. Despite favorable structural and spectroscopic parameters, unexpectedly slow singlet energy transfer rates are measured in comparison with the predicted values by the Förster theory and those observed for other structurally related dyads. This observation is rationalized by the lack of large molecular orbital (MO) overlaps between the frontier MOs of the donor and acceptor, thus preventing a double electron exchange through the trans‐PdI2 bridge, and by an electronic shielding induced by the presence of this same linker preventing the two chromophores to fully interact via their transition dipoles.  相似文献   

19.
A porphyrin-fullerene dyad, which is characterized by a close proximity of the porphyrin donor and the fullerene acceptor, was found to undergo a photoinduced electron transfer both in solutions and in solid films. Near-infrared charge-transfer (CT) emission was observed and analyzed in frame of the semi-classical Marcus electron-transfer theory yielding values for the reaction free energy, -deltaG degrees = 1.75 eV, the internal reorganization energy, lambdav = 0.05 eV, and the donor-acceptor vibrational energy, hv(v) = 0.14 eV, both in solution and in solid film. The influence of the environment on the CT properties of the dyad is described by a single parameter, the outer-sphere reorganization energy, lambdas, which varies from 0.05 eV in non-polar solvents and films to 0.13 eV in solvents of moderate polarity. At low temperatures (T< 200 K), the CT emission consists of distinct bands shifted from each other by value hv(v). This is the first direct observation of the vibrational frequencies of a porphyrin-fullerene donor-acceptor system.  相似文献   

20.
Synthesis and spectroscopic investigation of trifluoroethoxy-coated phthalocyanine-fullerene dyad 2 has been described. While nonfluorinated phthalocyanine-fullerene dyad 1 showed an efficient property of intramolecular photoinduced electron transfer, dyad 2, regardless of its covalently linked dyad system, appears not to show any electronic communication between fullerene and phthalocyanine. This observation is presumably due to the strong electron withdrawing nature of 12 trifluoroethoxy groups; fluorine leads phthalocyanine to become an acceptor whose electronic accepting property is equivalent to that of fullerene. This is a unique example that fluorine can terminate electronic communication in the covalently fullerene-phthalocyanine dyad system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号