首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
Ex situ conservation of endangered plants is an important aim in order to preserve biodiversity of flora in threatened ecosystems. Among the biotechnological techniques which can be used, cryopreservation is emerging as a preferred option in many instances. This study describes a cryopreservation technique developed for shoot tips of the endangered species Centaurea ultreiae (Compositae) using a vitrification procedure. Basal medium (BM) for preculture and loading phases consisted of 1/2 MS basal salts with modified vitamins (3 microM thiamine). For preculturing shoot tips, BM with five osmotic treatments were investigated: 0.3 M sucrose +/- 20 microM ABA, 0.6 M glycerol +/- 20 microM ABA and 0.25 M sucrose + 0.25 M glycerol + 10 microM ABA. A loading solution treatment (BM with 2 M glycerol and 0.4 M sucrose) was applied prior to exposure of shoot tips to PVS2 and found to be indispensable to obtaining successful post-LN recovery. Highest (95.5%) regrowth of LN immersed shoot tips was obtained following incubation on BM + 0.3 M sucrose + 20 microM ABA or 0.25 M sucrose + 0.25 M glycerol + 10 microM ABA, with loading treatment and PVS2 exposure for 20 minutes at 0 degree C. Keywords: cryopreservation, encapsulation, endangered species, ex situ conservation, vitrification.  相似文献   

2.
Towill LE  Bonnart R  Volk GM 《Cryo letters》2006,27(6):353-360
Development of a successful shoot tip cryopreservation method for Arabidopsis thaliana L. will enable researchers to use molecular tools to study processes important for successful cryopreservation in this model organism. We demonstrate that Arabidopsis can be successfully cryopreserved using either plant vitrification solution 2 (PVS2) or plant vitrification solution 3 (PVS3) as cryoprotectants prior to rapidly cooling shoot tips in liquid nitrogen (LN). Shoot tip regrowth after PVS2 cryoprotectant treatment was improved after cold acclimation treatments of 8 or 18 days. All of the shoots tips regrew after LN exposure when cryoprotected with PVS3 for 60 min at 22 degree C. In addition, shoot tips could be cryopreserved using a two-step cooling procedure with PGD (polyethylene glycol-glucose-dimethyl sulfoxide) as a cryoprotectant. The high levels of shoot formation after LN exposure of Arabidopsis shoot tips makes this a desirable system in which molecular tools can be used to examine how alterations in biochemical, metabolic and developmental processes affect regrowth after cryoprotective treatments.  相似文献   

3.
Gupta S  Reed BM 《Cryo letters》2006,27(1):29-42
Encapsulation-dehydration and PVS2-vitrification cryopreservation protocols were evaluated for the long-term conservation of a diverse group of Rubus germplasm. Cold acclimation for a 4-week period prior to cryopreservation was necessary for regrowth of shoot apices from blackberry and raspberry genotypes. For the encapsulation-dehydration protocol, encapsulated apices were pretreated in 0.75 M sucrose for 20 h, desiccated 6-h under laminar flow to c. 20 percent moisture content, then plunged in liquid nitrogen (LN) and rapidly warmed. The PVS2-vitrification protocol included pretreating shoot tips on 5 percent dimethyl sulfoxide (DMSO) medium for 48 h, exposure to loading solution (LS) and PVS2 for 20 min each at 25 degree C , followed by immersion in LN and rapid warming. Shoot tips of 25 genotypes in 9 Rubus species and 9 Rubus hybrids were successfully cryopreserved with recovery of 60 to 100 percent using the encapsulation-dehydration protocol. Four genotypes of 3 species were tested using the vitrification protocol with 71 percent average regrowth. The present results indicate that both of these improved cryopreservation protocols can be applied to a diverse range of Rubus genetic resources.  相似文献   

4.
In vitro shoot tips of Dioscorea deltoidea Wall., an endangered medicinal plant, were successfully cryopreserved using the vitrification and the encapsulation-dehydration techniques with subsequent high frequency plant regeneration. Using vitrification, post-liquid nitrogen (LN) shoot regeneration up to 83% was recorded when excised shoot tips were pretreated overnight on MS medium containing 0.3 M sucrose followed by loading with MS containing 2 M glycerol plus 0.4 M sucrose for 20 min at 25 degree C, dehydration with PVS2 for 90 min at 0 degree C and quenching in LN. After 1 h of storage in LN, the shoot tips were rewarmed in a water-bath at 40 degrees C, unloaded with 1.2 M sucrose solution for 20 min and cultured on recovery growth medium. While using encapsulation-dehydration, the highest regeneration frequency recorded was 76% when sucrose-pretreated shoot tips were encapsulated with 3% calcium alginate, precultured in 0.75 M sucrose for 3 days, dehydrated to 25% moisture content (FW basis) under the laminar air flow, stored in LN for 1h and rewarmed at 40 degree C. The cryopreserved shoot tips maintained their viability and an unaltered level of regeneration capability after up to one year of storage in LN.  相似文献   

5.
We cryopreserved in vitro shoot tips of saltcedar (Tamarix boveana Bunge) using the vitrification technique. The success of the cryopreservation protocol was strongly affected by preculture, loading duration, dehydration duration in plant vitrification solution 2 (PVS2), and medium composition during post-warming regrowth. The highest explant regrowth (50 percent) occurred when the following conditions were employed: preculture in 0.4 M glycerol; treatment with a loading solution (LS) consisting of 2 M glycerol + 0.4 M sucrose in culture medium for 40 min at room temperature; and dehydration in PVS2 at 0 degree C for 45 min before rapid immersion in liquid nitrogen (LN). Rewarming was performed in a water-bath at 40 degree C for 2 min. Explants were then immersed in unloading solution for 10 min before plating on recovery medium supplemented with 0.01 mg per liter thidiazuron (TDZ). TDZ was progressively eliminated from the medium over a period of 6 weeks. Plantlets were transferred to a double-layer medium to enhance rooting. This protocol was successfully applied to three individuals of T. boveana harvested from the wild.  相似文献   

6.
Cryopreservation of in vitro axillary shoot tips of Crateva nurvala Buch. Ham, an important medicinal tree, was investigated. Axillary buds (c. 1mm in length) excised from 4-week-old in vitro cultures, were pre-cultured on liquid MS medium supplemented with 0.4 M sucrose for 16 h. These were incubated in 2 M glycerol+0.4 M sucrose for 20 min at 25 degree C before being dehydrated with PVS2 solution for 40 min The dehydrated shoot tips were directly immersed in LN. Following cryopreservation and after rapid warming at 40 degree C, shoot tips were quickly washed with MS+1.2 M sucrose solution for 20 min and then plated on top of filter paper placed on MS medium supplemented with 0.1 mg l-1 BAP, kept in darkness for one day followed by placement of shoots directly on the medium and incubation in darkness for a day more, before transfer of cultures to light. Average survival in terms of normal shoot formation after 4 weeks of plating was 56.6 percent. The rescued shoot tips were bulked up by subsequent nodal cultures and when put onto 0.02 mg l-1 NAA showed a rhizogenic response. Thus, in vitro-grown shoot tips of Crateva nurvala were successfully cryopreserved following the optimization of the PVS2-vitrification protocol.  相似文献   

7.
Sharma N  Sharma B 《Cryo letters》2003,24(3):181-190
The cryopreservation of shoot tips of Picrorhiza kurroa Royle ex Benth (IC 266698), an endangered medicinal plant of India was investigated. Shoot tips (about 1 mm in length) excised from four-week-old proliferating shoot cultures were precultured on MS medium supplemented with various osmotica before dehydrating with PVS2 solution at 0 degrees C. The dehydrated shoot tips were directly immersed in LN2. Following cryopreservation, and after rapid rewarming at 45 degrees C, shoot tips were quickly washed with 1.2 M sucrose solution and then plated on solidified shoot culture medium. Shoot tips were successfully cryopreserved by vitrification, when they were precultured on medium supplemented with 5% DMSO at 4 degrees C for two days before dehydrating in PVS2 for 10-20 minutes at 0 degrees C. Average survival in terms of normal shoot formation after 4 wks of plating was about 20% without callus formation. Cold hardening of shoot cultures for four weeks at 4 degrees C significantly improved the survival and shoot regeneration of cryopreserved shoot tips to 70% and 35%, respectively.  相似文献   

8.
Thammasiri K 《Cryo letters》2000,21(4):237-244
Seeds from selfing of a Thai orchid (Doritis pulcherrima Lindl.) were successfully cryopreserved in liquid nitrogen (LN) using the vitrification method. Seeds from 3-month-old pods were sufficiently dehydrated in 2 ml cryotubes filled with highly concentrated vitrification solution (PVS2) at 25 +/- 2 degree C for 50 min. The seeds were then rapidly plunged into LN. After rapid warming, the PVS2 solution was replaced with 0.5 ml of 1.2M sucrose in modified Vacin and Went (1949) (VW) solution and kept at 25 +/- 2 degree C for 20 min prior to transfer on VW agar medium. About 62% of cryopreserved seeds treated with PVS2 solution were able to develop into normal seedlings while without that treatment there was no survival. This vitrification protocol appears to be a promising technique for the cryopreservation of some Thai orchid germplasm  相似文献   

9.
Hirai D 《Cryo letters》2011,32(4):287-296
The droplet vitrification method was improved for maneuverability by embedding shoot tips in gelled droplets before osmoprotection. This newly modified cryopreserving method -gelled droplet vitrification - was compared with other PVS2-based cryopreservation methods using potato shoot tips. Survival rates of each cryogenic procedure held at 25 degree C were about 40 percent by cryotube-vitrification procedures (vitrification and encapsulation vitrification methods) and about 70 percent by PVS2-droplet procedures (droplet vitrification and gelled droplet vitrification methods). Much higher cooling rates of PVS2-droplet procedures than cryotube- vitrification procedures increased their survival rates. The gelled droplet vitrification method was applied to shoot tips of 26 potato cultivars and six wild potatoes. After a little modifications of the conditions for preculture, osmoprotection and dehydration, all cultivars and wild potatoes produced high enough survival rates to be of value to genebanks and all surviving shoot tips developed normal shoots within 3 weeks.  相似文献   

10.
Shoot-tips isolated from two transgenic lines of chrysanthemum (Dendranthema grandiflorum Kitam.) var. Indianapolis in vitro plantlets with induced capacity to biosynthesize trehalose, and from a non-transformed line, were subjected to cryopreservation using a vitrification procedure. After dissection, apices were precultured on semi-solid MS medium with 0.3 M sucrose for 4 days, loaded in a 0.4 M sucrose + 2 M glycerol solution for 20-30 min and exposed to PVS2 or PVS3 vitrification solutions for 0, 20, 40 or 60 min at room temperature prior to rapid immersion in liquid nitrogen. The highest shoot regeneration after cryopreservation was obtained with exposure to either PVS solution for 40 min. Plant regeneration from cryopreserved shoot-tips ranged between 48 percent and 67 percent for transgenic lines and between 33 percent and 36 percent for non-transgenic lines. No polymorphic loci were detected in plantlets regenerated from cryopreserved and non-cryopreserved shoot-tips with RAPD techniques using eight primers that amplified 101 monomorphic loci.  相似文献   

11.
An efficient cryopreservation technique for in vitro grown shoots of ginger (Zingiber officinale Rosc) was developed based on encapsulation dehydration, encapsulation vitrification and vitrification procedures. Pregrowth and serial preculture were needed to obtain the best regrowth for all techniques. The vitrification procedure resulted in higher regrowth (80%) when compared to encapsulation vitrification (66%) and encapsulation dehydration (41%). In the vitrification procedure shoots were: precultured in liquid Murashige-Skoog medium containing 0.3 M sucrose for 3 days; cryoprotected with a mixture of 5% DMSO and 5% glycerol for 20 min at room temperature; osmoprotected with a mixture of 2 M glycerol and 0.4 m sucrose for 20 min at 25 degrees C; before being dehydrated with a highly concentrated vitrification solution (PVS2) for 40 min at 25 degrees C. The dehydrated shoots were transferred to 2 ml cryotubes, suspended in 1 ml PVS2 and plunged directly into liquid nitrogen. In all the three cryopreservation procedures tested, shoots grew from cryopreserved shoot tips without intermediary callus formation. The genetic stability of cryopreserved ginger shoot buds were confirmed using ISSR and RAPD profiling.  相似文献   

12.
The main purpose of this study was to develop a cryopreservation protocol for ash and to highlight the importance of testing different clones and plant material of different ontogenetic states. In vitro-grown ash (Fraxinus excelsior L.) shoot tips were successfully cryopreserved following optimization of the PVS2-vitrification protocol. Pretreatment conditions were optimized and three cryopreservation techniques (encapsulation/dehydration, PVS2-vitrification and encapsulation-vitrification) were tested one after another. PVS2-vitrification proved to be the most suitable technique. In vitro-grown shoot tips of ash were successfully cryopreserved with a mean regrowth of 73% for juvenile clones and 67% for selected mature trees. The optimum preculture conditions and the initial protocol were: 10 days cold hardening, preculture for 2 days on medium with 0.8 M glycerol, incubation in 2 M glycerol solution for 20 min at 22 degrees C followed by PVS2 for 25 min at 0 degrees C on ice and direct immersion in liquid nitrogen. Warming was carried out in 43 degree C water for 1 min followed by 22 degree C water for 10 sec. The encapsulation/dehydration method was not successful for shoot tips of F. excelsior because the shoots were sensitive to osmotic dehydration. The encapsulation/vitrification method resulted in a mean regrowth of only 16%. PVS2 vitrification can now be used to store important ash germplasm of either juvenile or mature trees.  相似文献   

13.
Several modifications to the cryogenic protocols previously described for pineapple apices were performed using vitrification and encapsulation-vitrification. Pregrowth of apices in sucrose-proline before loading significantly reduced the exposure duration to PVS2 and PVS3 required for successful cryopreservation. Encapsulation and treatments with PVS3 at 0 degree C gave the highest survival before and after cooling. Optimal conditions involved the encapsulation of pineapple apices in calcium alginate (3 percent) followed by a 2-d preculture in liquid medium with 0.16 M sucrose + 0.3 M proline for 24 h and then transfer to 0.3 M sucrose + 0.3 M proline for an additional 24 h. After preculture, samples were loaded in 0.75 M sucrose + 1 M glycerol solution at room temperature (25 min) and dehydrated with PVS3 at 0 degree C for 60 min before immersion into liquid nitrogen. Following this procedure 54 percent and 83 percent of apices from MD-2 and Puerto Rico varieties respectively survived.  相似文献   

14.
Lee YG  Popov E  Cui HY  Kim HH  Park SU  Bae CH  Lee SC  Engelmann F 《Cryo letters》2011,32(6):487-497
A droplet-vitrification protocol has been established for cryopreserving Chrysanthemum morifolium cv. Peak using axillary shoot tips and apical shoots of in vitro plants. In the optimized procedure, explants were submitted to a step-wise preculture in liquid sucrose-enriched medium (0.3, 0.5 and 0.7 M for 31,17 and 7 h, respectively). Precultured explants were treated for 40 min with C4 loading solution comprising (w/v) 17.5 percent glycerol + 17.5 percent sucrose, then dehydrated with PVS3 vitrification solution (w/v, 50 percent glycerol + 50 percent sucrose) for 60 min (axillary shoot tips) or 90 min (apical shoots). Explants were cryopreserved by direct immersion in liquid nitrogen in minute drops of PVS3 attached to aluminum foil strips. The optimal age of donor plants was 4-5.5 weeks for apical shoots and 7 weeks for axillary shoot tips, producing post-cryopreservation regeneration percentages of 81.9 percent and 84.9 percernt, respectively. Plants regenerated from cryopreserved samples showed no phenotypical abnormalities and similar profiles of relative DNA content were recorded for control and cryopreserved plants. Our results suggest that the modified droplet-vitrification protocol described in this paper is highly effective and may prove user-friendlier than the cryopreservation protocols already published for chrysanthemum.  相似文献   

15.
Kim HH  Yoon JW  P YE  Cho EG  Sohn JK  Kim TK  Engelmann F 《Cryo letters》2006,27(4):223-234
The applicability of cryopreservation protocols to a broad range of genotypes is a key issue for genebanks. We tried to identify the critical factors causing differences in survival of cryopreserved shoot tips using potato varieties coming from cultivated and wild species. The droplet-vitrification method, a combination of droplet-freezing and solution-based vitrification, was selected from several protocols. High survival after freezing was observed after dehydration with PVS2 for 20 min, cooling shoot tips placed in a droplet of PVS2 solution on aluminum foil strips by immersing the foil strips in liquid nitrogen, warming them by plunging the foil strips into a 0.8 M sucrose solution (at 40 degrees C) for 30 s and unloading in 0.8 M sucrose for 30 min. This optimized protocol was successfully applied to 12 accessions with survival ranging between 64.0 and 94.4%.  相似文献   

16.
The thermal behavior of garlic shoot tips was analyzed during the course of a vitrification protocol using the PVS3 vitrification solution. The size of shoot tips did not significantly influence the thermal behavior of garlic shoot tips. Though there was no significance, endo-thermal enthalpy from melting of crystalline ice increased as preculture duration increased to 6 days. Preculture on medium with 0.5 M sucrose significantly lowered exo- and endothermal enthalpies of dehydration-control shoot tips. By contrast, after dehydration with PVS3 solution, the concentration of sucrose in preculture medium had no significant effect on the value of enthalpies. A big thermal event was observed in garlic shoot tips air-dried for 1-3 h before dehydration. Both vitrification solution and dehydration duration significantly (P < 0.0001) influenced exo- and endothermal enthalpies. After dehydration with PVS1, PVS2, Fahy or Steponkus solutions for 120 min, only a small peak was detected in some shoot tips, but recovery of cryopreserved shoot tips was low. Dehydration duration with PVS3 solution significantly (P < 0.0001) influenced exo- and endothermal enthalpies and onset temperatures during cooling and warming. After dehydration for 150 and 180 min with PVS3 vitrification solution, no crystallization was observed during cooling and warming in most replicates, and recovery of cryopreserved shoot tips was highest (> 80%). There was a significant (P < 0.001) negative correlation between moisture content of shoot tips and concentration of sucrose and glycerol, and regeneration of cryopreserved shoot tips. By contrast, there was a significant (P < 0.001) positive correlation between MC and enthalpy of ice melting, and onset temperature of crystallization. Overall, the results of the analysis of the thermal behavior of garlic shoot tips coincide very well with their recovery after cryopreservation and provide a very useful tool for the establishment and optimization of cryopreservation protocols.  相似文献   

17.
Baek HJ  Kim HH  Cho EG  Chae YA  Engelmann F 《Cryo letters》2003,24(6):381-388
This paper investigates the effect of the origin and size of the explants employed and of the preconditioning (cold acclimation, preculture) and loading treatments on survival and regeneration of cryopreserved garlic shoot apices using vitrification with the PVS3 vitrification solution. Both the origin and size of explants had a significant effect on regeneration of cryopreserved apices. Higher regeneration was generally observed with apices excised from bulbs and bulbils, followed by cloves, and those originated from larger propagules regrew more rapidly. Smaller apices (1.5 or 3.0 mm in diameter) displayed higher regeneration than large ones (4.5 mm in diameter). Cold acclimation at 5 degree C of apices before freezing had no positive effect on regeneration after cryopreservation. Preculture of apices at 10 or 23 degree C for more than 3 days had a detrimental effect on regeneration. The optimal sucrose concentration in the preculture medium was 0.3-0.5 M. Loading apices for 30 or 60 min at 23 degree C in medium containing 2 M glycerol + 0.4 M sucrose or 1 M glycerol + 0.8 M sucrose had no effect on regeneration after cryopreservation, in comparison with apices cryopreserved without loading treatment. Under optimal conditions, regeneration of cryopreserved apices sampled from large cloves was above 90 percent.  相似文献   

18.
Cryopreservation of plum (Prunus domestica L.), cv Regina Claudia, was obtained by a vitrification/one-step cooling procedure of shoot tips from cold-hardened in vitro-grown plants. Best survival (57%) was obtained when the shoot tips were precultured at 4 degree C for 2 days on 0.09 M sucrose-containing Quoirin and Le Poivre medium, loaded for 30 min with a cryoprotectant (2 M glycerol and 0.4 M sucrose), incubated with the PVS2 solution at 0 C for 90 min, and directly plunged into liquid nitrogen. After re-warming in a waterbath at 40 degree C, the shoot tips were washed in a 1.2 M-sucrose MS solution for 20 min and finally plated on a regrowth medium. In comparison with the one-step cooling procedure, both the slow cooling (-0.5 degree C/min up to -45 degree C), and the two-step cooling (-160 degree C for 25 min, then -196 degree C) gave lower percentages of shoot-tip survival. Among the other cryogenic procedures tested, the performance of the encapsulation-vitrification method was similar to the vitrification protocol in terms of shoot-tip regrowth (47.5%), while encapsulation-dehydration was unsatisfactory.  相似文献   

19.
North American ginseng (NAG) (Panax quinqueolius L.) is a medicinal plant in high demand due to its health benefits. Cryopreservation is a good alternative for long-term conservation of NAG germplasm. Pretreatments of shoot tips (0.8-1 mm) and cotyledons (1-2 mm) on sucrose and abscisic acid (ABA) enriched medium were tested to determine the effects on regrowth following cryopreservation in liquid nitrogen. The maximum regrowth (60 percent) following PVS2 vitrification occurred with shoot tips after three weeks of cold acclimation and pretreatment on sucrose (0.3 M) or a combination of ABA (0.1 M) and sucrose in the third week. Cotyledon recovery was best with the combination pretreatment. Shoot tips showed normal development and cotyledons produced embryogenic callus after the cryopreservation process. This is the first report on cryopreservation of shoot tips and cotyledons of Panax species. This cryopreservation protocol provides a safe long-term storage method for important NAG selections and makes it possible to use cryopreservation for improving the security of NAG germplasm.  相似文献   

20.
Shoot-tips of Parkia speciosa, a recalcitrant seed producing tropical leguminous tree withstood cryopreservation using encapsulation-vitrification in combination with trehalose preculture. Differential scanning calorimetry (DSC) revealed that trehalose moderated the thermal characteristics of the shoot-tips. A 30 min PVS2 treatment had the lowest glass transition temperature (Tg) (-50.2 +/- 1.1 degree C) when applied in combination with 5% (w/v) trehalose. The Tg increased to -40.2 +/- 1.0 degree C as the sugar concentration was decreased to 2.5 percent (w/v). Tg heat capacity for shoot-tips treated with 2.5 percent and 5 percent (w/v) trehalose and exposed to PVS2 for 30 min increased from 0.17 +/ 0.05 to 0.23 +/- 0.01 J per gram, respectively. Enthalpies of the melt-endotherm varied in proportion to trehalose concentration, for the 30 min PVS2 treatment, whereas the melt enthalpy for control shoots was greater than 150 J per gram and decreased to ca. 60 J per gram with 2.5 percent (w/v) trehalose. For 5 percent and 10 percent (w/v) trehalose treatments, enthalpy declined to ca. 24 and 12 J per gram respectively and freezing points were depressed to -75 degree C and -85 degree C with 2.5 percent and 5 percent trehalose (w/v), respectively. DSC elucidated the critical points at which vitrification occurred in germplasm exposed to trehalose and PVS2. A 60 min PVS2 treatment supporting ca. 70 percent survival was found optimal for stable glass formation during cooling and on rewarming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号