首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Some aroma compounds found in alcoholic beverages are characteristic of a certain beverage (i.e. 2,4-decadienoic acid ethyl ester is characteristic of pear spirit and 5-butyltetrahydro-4-methylfuran-2-on “whiskey lactone” is characteristic of aged spirits like whiskey). These substances were detectable in beverages but not in blood samples. The aim of this investigation was to find a sensitive sampling technique for aroma compounds in whole blood samples. This technique may be used in forensic toxicology for examination of drinking claims. The method comprises dynamic headspace sampling using a purge and trap concentrator, followed by quantitative gas chromatography–mass spectrometry (dynamic HS–GC–MS). The influence of sample preparation, trap adsorbents and sample temperature as well as desorption time and purge time on the quality of the analytical results were investigated. The following optimal parameters were determined: stirred and diluted whole blood sample without salt addition, use of Carbotrap C as trap material, sample temperature at 80 °C, desorption time 20 min and purge time 30 min. These optimal parameters were used for the determination of detection limits (LOD). The LOD of aroma compounds by means of dynamic headspace sampling were compared with the results of conventional sampling: the static headspace technique. Limits of detection for the aroma compounds with conventional static headspace GC are in the range 400–10,000 μg L−1. Dynamic headspace–GC was found to be a more sensitive sampling technique for most of the aroma compounds investigated (e.g. C4–C8 ethyl esters, benzoic acid ethyl ester, linalool oxide and 4-ethylguaiacol) with detection limits between 1 and 50 μg L−1, but there were also limits to the sampling of substances with lower volatility like decanoic acid ethyl ester, 2,4-decadienoic acid ethyl ester, eugenol and whiskey lactone with detection limits of about 1,000 μg L−1.

  相似文献   

2.
Some aroma compounds found in alcoholic beverages are characteristic of a certain beverage (i.e. 2,4-decadienoic acid ethyl ester is characteristic of pear spirit and 5-butyltetrahydro-4-methylfuran-2-on “whiskey lactone” is characteristic of aged spirits like whiskey). These substances were detectable in beverages but not in blood samples. The aim of this investigation was to find a sensitive sampling technique for aroma compounds in whole blood samples. This technique may be used in forensic toxicology for examination of drinking claims. The method comprises dynamic headspace sampling using a purge and trap concentrator, followed by quantitative gas chromatography–mass spectrometry (dynamic HS–GC–MS). The influence of sample preparation, trap adsorbents and sample temperature as well as desorption time and purge time on the quality of the analytical results were investigated. The following optimal parameters were determined: stirred and diluted whole blood sample without salt addition, use of Carbotrap C as trap material, sample temperature at 80 °C, desorption time 20 min and purge time 30 min. These optimal parameters were used for the determination of detection limits (LOD). The LOD of aroma compounds by means of dynamic headspace sampling were compared with the results of conventional sampling: the static headspace technique. Limits of detection for the aroma compounds with conventional static headspace GC are in the range 400–10,000 μg L?1. Dynamic headspace–GC was found to be a more sensitive sampling technique for most of the aroma compounds investigated (e.g. C4–C8 ethyl esters, benzoic acid ethyl ester, linalool oxide and 4-ethylguaiacol) with detection limits between 1 and 50 μg L?1, but there were also limits to the sampling of substances with lower volatility like decanoic acid ethyl ester, 2,4-decadienoic acid ethyl ester, eugenol and whiskey lactone with detection limits of about 1,000 μg L?1.  相似文献   

3.
静态顶空法是一种简单、环保的样品前处理方法.通过对比试验,优化了影响静态顶空进样方法灵敏度的主要因素,确定了较佳的样品盐度(40%)、平衡温度(80℃)、平衡时间(10 min)、平衡压力(0.103 4 MPa)、定量环平衡时间(20 s)、进样时间(3 min)等前处理方法参数.采用优化后水样前处理条件及1.00 k V的检测器电压,59种挥发性有机物在特定的线性范围内,标准曲线线性相关系数均大于0.998,方法检出限为丙烯腈4.4μg/L、硝基苯7.6μg/L,其余挥发性有机物(VOCs)介于0.06~1.4μg/L,饮用水源水及污水处理厂进水实际样品加标回收率为60%~110%,精密度(RSD)为0.33%~22%(n=6).建立的静态顶空-气相色谱/质谱法(HS-GC/MS)水样前处理过程自动化,可同时对水中59种挥发性有机物进行检测.  相似文献   

4.
For air/headspace analysis, needle trap devices (NTDs) are applicable for sampling a wide range of volatiles such as benzene, alkanes, and semi-volatile particulate bound compounds such as pyrene. This paper describes a new NTD that is simpler to produce and improves performance relative to previous NTD designs. A NTD utilizing a side-hole needle used a modified tip, which removed the need to use epoxy glue to hold sorbent particles inside the NTD. This design also improved the seal between the NTD and narrow neck liner of the GC injector; therefore, improving the desorption efficiency. A new packing method has been developed and evaluated using solvent to pack the device, and is compared to NTDs prepared using the previous vacuum aspiration method. The slurry packing method reduced preparation time and improved reproducibility between NTDs. To evaluate the NTDs, automated headspace extraction was completed using benzene, toluene, ethylbenzene, p-xylene (BTEX), anthracene, and pyrene (PAH). NTD geometries evaluated include: blunt tip with side-hole needle, tapered tip with side-hole needle, slider tip with side-hole, dome tapered tip with side-hole and blunt with no side-hole needle (expanded desorptive flow). Results demonstrate that the tapered and slider tip NTDs performed with improved desorption efficiency.  相似文献   

5.
A method for the determination of 15 aromatic hydrocarbons in eluates from solid residues produced during the co-pyrolysis of plastics and pine biomass was developed. In a first step, several sampling techniques (headspace solid phase microextraction (HS-SPME), static headspace sampling (HS), and dispersive liquid-liquid microextraction (DLLME) were compared in order to evaluate their sensitivity towards these analytes. HS-SPME and HS sampling had the better performance, but DLLME was itself as a technique able to extract volatiles with a significant enrichment factor.HS sampling coupled with GC-MS was chosen for method validation for the analytes tested. Calibration curves were constructed for each analyte with correlation coefficients higher than 0.999. The limits of detection were in the range of 0.66-37.85 ng/L. The precision of the HS method was evaluated and good repeatability was achieved with relative standard deviations of 4.8-13.2%. The recoveries of the analytes were evaluated by analysing fortified real eluate samples and were in the range of 60.6-113.9%.The validated method was applied in real eluate samples. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the compounds in higher concentrations.The DLLME technique coupled with GC-MS was used to investigate the presence of less volatile contaminants in eluate samples. This analysis revealed the presence of significant amounts of alkyl phenols and other aromatic compounds with appreciable water solubility.  相似文献   

6.
Headspace solid phase microextraction (headspace SPME) has been demonstrated to be an excellent solvent-free sampling method. One of the major factors contributing to the success of headspace SPME is the concentrating effect of the fiber coating toward organic compounds. The affinity of the fiber coating toward very volatile analytes, such as chloromethane, may, however, not be large enough for detection at the parts per trillion concentration level. Static headspace analysis, on the other hand, is very effective for these very volatile compounds. As analyte volatility decreases, the sensitivity of static headspace analysis drops. The complementary nature of these two sampling methods can be exploited by combining the SPME device with a gastight syringe. The sensitivity of the new sampling device is better than that of SPME for very volatile compounds or that of static headspace analysis for less volatile compounds. This new method can sample a wide range of compounds from chloromethane (b.p. −24°C) to bromoform (b.p. 149°C) with estimated limits of detection at the low parts per trillion level.  相似文献   

7.
This paper compares two analytical methods for determining levels of 90 volatile organic compounds (VOCs) commonly found in industrial and urban atmospheres. Both methods are based on two official methods for determining benzene levels and involve collecting samples by active adsorptive enrichment on solid sorbents. The first method involves solvent extraction and uses activated charcoal as a sorbent. After sampling, the sorbent is extracted with 1 mL of carbon disulfide and then 1 μL of the extract is analysed in a GC-MS. The second method involves thermal desorption (TD) and uses Tenax TA and Carbograph 1TD as sorbents, which allows the whole sample to be analysed. In general, the thermal desorption method showed the best repetitivity and recovery and the lowest limit of detection and quantification for all target compounds. Because of its lower sensitivity, the solvent extraction method needs the preconcentration of large sample volumes of air (720 L vs. 2.64 L for the thermal desorption method) to yield similar limits of detection.The performance of both methods in real samples was tested in a location near to a petrochemical complex. The results of the 24-h samples for the solvent extraction method were compared with the average of 12 2-h samples for the TD method. In some cases, both methods found differences in the VOC concentrations, especially in those compounds whose concentrations fluctuate significantly during the day.  相似文献   

8.
Needle trap devices (NTDs) are improving in simplicity and usefulness for sampling volatile organic compounds (VOCs) since their first introduction in early 2000s. Three different sample transfer methods have been reported for NTDs to date. All methods use thermal desorption and simultaneously provide desorptive flow to transfer desorbed VOCs into a GC separation column. For NTDs having 'side holes', GC carrier gas enters a 'side hole' and passes through sorbent particles to carry desorbed VOCs, while for NTD not having a 'side hole', clean air as desorptive flow can be provided through a needle head by a air tight syringe to sweep out desorbed VOCs or water vapor has been reported recently to be used as desorptive flow. We report here a new simple sample transfer technique for NTDs, in which no side holes and an external desorptive flow are required. When an NTD enriched by a mixture of benzene, toluene, ethylbenzene, and xylene (BTEX) or n-alkane mixture (C6-C15) is exposed to the hot zone of GC injector, the expanding air above the packed sorbent transfers the desorbed compounds from the sorbent to the GC column. This internal air expansion results in clean and sharp desorption profiles for BTEX and n-alkane mixture with no carryover. The effect of desorption temperature, desorption time, and overhead volumes was studied. Decane having vapor pressure of approximately 1 Torr at 20 degrees C showed approximately 1% carryover at the moderate thermal desorption condition (0.5 min at 250 degrees C).  相似文献   

9.
This study evaluates concentration capability of headspace sorptive extraction (HSSE) and the influence of sampling conditions on HSSE recovery of an analyte. A standard mixture in water of six high-to-medium volatility analytes (isobutyl methyl ketone, 3-hexanol, isoamyl acetate, 1,8-cineole, linalool and carvone) was used to sample the headspace by HSSE with stir bars coated with different polydimethylsiloxane (PDMS) volumes (20, 40, 55 and 110 microL, respectively), headspace vial volumes (8, 21.2, 40, 250 and 1000 mL), sampling temperatures (25, 50 and 75 degrees C) and sampling times (30, 60 and 120 min, and 4, 8 and 16 h). The concentration factors (CFs) of HSSE versus static headspace (S-HS) were also determined. Analytes sampled by the PDMS stir bars were recovered by thermal desorption (TDS) and analysed by capillary GC-MS. This study demonstrates how analyte recovery depends on its physico-chemical characteristics and affinity for PDMS (octanol-water partition coefficients), sampling temperatures (50 degrees C) and times (60 min), the volumes of headspace (40 mL) and of PDMS (in particular, for high volatility analytes). HSSE is also shown to be very effective for trace analysis. The HSSE CFs calculated versus S-HS with a 1000 mL headspace volumes at 25 degrees C during 4 h sampling ranged between 10(3) and 10(4) times for all analytes investigated while the limits of quantitation determined under the same conditions were in the nmol/L range.  相似文献   

10.
E.S. Farrell  G.E. Pacey 《Talanta》2010,82(2):739-744
A new dispersive vapor extraction (DVE) technique for rapid removal of selected volatile organic compounds (VOCs) from gaseous mixtures was investigated. In this technique, less than 1.0 mL of a volatile solvent was vaporized for 8 min in a 250-mL flask containing a gaseous mixture. The flask was then cooled under running tap water for 2-3 min to induce condensation of the vapor and co-extraction of the VOCs from the headspace. The technique was tested over a concentration range of 4-23 ppb, and resulted in extraction efficiencies ranging from 80 to 97% for the VOCs tested. Because of its simplicity and the relatively short sampling time, DVE could potentially lead to high sample throughput and rapid air analysis.  相似文献   

11.
Alvarado JS  Rose C 《Talanta》2004,62(1):17-23
Traditional methodologies for the characterization of volatile organic compounds (VOCs) in subsurface soil are expensive, time-consuming processes that are often conducted on samples collected at random. The determination of VOCs in near-surface soils and vegetation is the foundation for a more efficient sampling strategy to characterize subsurface soil and improve understanding of environmental problems.In the absence of a standard methodology for the determination of VOCs in vegetation and in view of the high detection limits of the method for soils, we developed a methodology using headspace gas chromatography with an electron capture detector for the determination of low levels (parts-per-billion to parts-per-trillion) of VOCs in soils and vegetation. The technique demonstrates good sensitivity, good recoveries of internal standards and surrogate compounds, good performance, and minimal waste. A case study involving application of this technique as a first-step vadose-zone characterization methodology is presented.  相似文献   

12.
Semipermeable membrane devices (SPMDs) were evaluated as passive samplers for the determination of 26 volatile organic compounds (VOCs) in contaminated air of occupational environments. A direct methodology based on the use of head-space-gas chromatography-mass spectrometry (HS-GC-MS) was developed for VOCs determinations in SPMDs, without any sample pre-treatment and avoiding the use of solvents. A desorption temperature of 150 °C for 10 min was sufficient for a sensitive VOCs determination providing limits of detection in the range of 15 ng SPMD−1 for 21 of 26 studied compounds. Linear and equilibrium uptake models were established for each VOC from compound isotherms. Highly volatile compounds were slightly absorbed and moderately volatile compounds were strongly absorbed by SPMDs. This study is the first precedent of the use of SPMDs for the simultaneous sampling of a wide number of VOCs. The use of SPMDs is a simple and low cost alternative to ordinary sampling devices such as Radiello® diffusive samplers or badge-type solid-phase supports.  相似文献   

13.
Yang J  Ramesh A 《The Analyst》2005,130(3):397-403
A novel membrane-introduced infrared (IR) chemical sensing method has been developed for the detection of volatile organic compounds (VOCs) in aqueous solutions. In this method, a porous Teflon membrane was used to eliminate the problems associated with conventional IR spectroscopic sensing methods. The porous Teflon membrane was sealed below an IR spectroscopic sensing element pre-coated with a hydrophobic film and a two-channel flow cell configuration was established. In this configuration, the aqueous sample was allowed to pass through the lower channel and the VOCs that penetrated through the membrane to the upper channel were detected by the IR sensor. In this manner, the performance of the sampling at the headspace was improved while the problems caused by the presence of water were eliminated. Meanwhile, using a purging channel allowed the sensing element to be regenerated rapidly and enabled automation of the detection process. The parameters that influenced the analytical signals were studied, such as the sampling flow rate, the pH and ionic strength of the sample solutions, the effect of the volatilities of the VOCs, and the regeneration efficiency of the sensing element. The results indicated that the analytical signals were insensitive to the sampling flow rate and to the pH and ionic strength of the sample solutions. The results obtained from the detection of seven different volatile compounds indicated that this method is highly suitable for the detection of organic compounds that have vapor pressures >1 Torr and that it is potentially usable for organic compounds that have vapor pressures between 20 mTorr and 1 Torr. The regression analysis of the standard curves indicated that a regression coefficient (R(2)) > 0.99 was obtainable in the concentration range from 1 to 100 microg mL(-1). The detection limits for the tested compounds were around a few hundred ng mL(-1).  相似文献   

14.
A new headspace solid-phase microextraction (HSSPME) procedure carried out under vacuum conditions is proposed here where sample volumes commonly used in HSSPME (9 mL) were introduced into pre-evacuated commercially available large sampling chambers (1000 mL) prior to HSSPME sampling. The proposed procedure ensured reproducible conditions for HSSPME and excluded the possibility of analyte losses. A theoretical model was formulated demonstrating for the first time the pressure dependence of HSSPME sampling procedure under non equilibrium conditions. Although reduced pressure conditions during HSSPME sampling are not expected to increase the amount of analytes extracted at equilibrium, they greatly increase extraction rates compared to HSSPME under atmospheric pressure due to the enhancement of evaporation rates in the presence of an air-evacuated headspace. The effect is larger for semivolatiles whose evaporation rates are controlled by mass transfer resistance in the thin gas film adjacent to the sample/headspace interface. Parameters that affect HSSPME extraction were investigated under both vacuum and atmospheric conditions and the experimental data obtained were used to discuss and verify the theory. The use of an excessively large headspace volume was also considered. The applicability of Vac-HSSPME was assessed using chlorophenols as model compounds yielding linearities better than 0.9915 and detection limits in the low-ppt level. The repeatability was found to vary from 3.1 to 8.6%.  相似文献   

15.
We report on a simple, rapid, and efficient method for the extraction of volatile organic compounds (VOCs; including methanol, tetrahydrofuran, 2-hexanone and benzene) from air and solid samples. The system is based on the use of a laboratory-made syringe as the extractor. The needle of the syringe is placed in a chamber cooled by liquid nitrogen. The tip of the needle is placed in the headspace of a vial containing the sample. The headspace components then are circulated with a pump to pass the needle, and this results in freeze-trapping of the VOCs on the inner surface of the needle. The circulation of the headspace components is continued for 15 min, and the syringe is then removed and placed in a GC injector. The effects of volume of the sample vial, headspace flow rate, temperature and time of extraction and desorption were optimized. The overall time for sampling and analysis is <30 min. The method displays an extraction efficiency of >80%) and a good sample transfer efficiency into the GC column due to the absence of a sorbent inside the needle. No carry-over was observed after 30?s desorption at 260?°C. An external standard method was used for quantitative analysis. The relative standard deviation values are below 10% and the limits of detection range from 1.3 to 4.6?ng?g?1.
Fiugre
The scheme of sorbentless cryogenic needle trap device  相似文献   

16.
The determination of five volatile organochlorine compounds, VOX (chloroform, 1,1,1-trichloroethane, carbon tetrachloride, trichloroethene and tetrachloroethene) in raw landfill leachates and biologically cleansed leachates by GC-MS is investigated. Two extraction and preconcentration procedures were evaluated for recovery of such analies from the samples, including static headspace (HS) and solid phase microextraction by sampling the headspace above the sample (HS-SPME). Optimisation of operating parameters for the best performance of both, sampling and preconcentration techniques was described. Detection limits, time of analysis, precision and linear ranges of both introduction techniques have been established. Application of proposed methods to the determination of the five VOX under study in the above referred samples revealed the absence of such analytes in both leachates. Then both methods were applied to the determination to the five organochlorine compounds under study on spiked leachates samples. While HS-GC-MS offered better analytical precision than HS-SPME-GC-MS, this last technique gave a faster analytical response because no dilution must be done for a reliable VOX determination in landfill leachates. In any case, both sample introduction techniques tested provides excellent recoveries and good analytical precision (ranged from 1 to 3%).  相似文献   

17.
A rapid and simple large volume headspace (HS) sampling technique termed headspace solid-phase microcolumn extraction (HS-SPMCE) is described. HS gas above a liquid or solid sample is aspirated by attaching a gas-tight syringe onto a glass thermal desorption tube filled with Tenax sorbent. The trapped analytes are recovered by thermal desorption for gas chromatography–mass spectrometry (GC–MS) analysis. Benzene, toluene, ethylbenzene and the xylene isomers (BTEX) are used as model compounds to demonstrate the application of the extraction procedure for water samples. The results of the tests of the effect of agitation time and aspiration rate on recovery of the analytes show a good robustness of the method. BTEX are determined in the linear range from 0.5 to 50.0 μg L?1 with limits of detection (3 σ) ranging within 0.09–0.14 μg L?1 (MS was in scan mode). The method provides a good repeatability (RSD < 9%) and only a negligible carryover effect was observed ( ≤0.05%) when analysing BTEX at concentration 50.0 μg L?1.  相似文献   

18.
The analysis of volatile organic compounds (VOCs) in whole human blood at the low parts-per-trillion level has until recently required the use of a high-resolution mass spectrometer to obtain the specificity and detection limits required for epidemiological studies of VOC exposure in the general public. Because of the expense and expertise required to operate and maintain a high-resolution instrument, the applicability of this method has been limited. These limitations are overcome in a new method using automated headspace solid-phase microextraction (SPME) in conjunction with a gas chromatograph and a benchtop quadrupole mass spectrometer. A combination of SPME and multiple single-ion monitoring minimizes the interferences and chemical noise associated with whole blood samples. This method permits the analysis of 10 VOCs in human blood while simplifying the sample preparation and reducing the possible exposure of the analyst to blood aerosols. Twelve samples can be run successively in a fully automated mode, thus eliminating the need for operator attention. Detection limits are below 50 ppt (pg/mL) for a majority of the VOCs tested with a 5-mL sample.  相似文献   

19.
In this article, the potential of carbon nanocones/disks as coating for solid-phase microextraction has been evaluated for the first time. The nanostructures were immobilized on a stainless steel needle by means of an organic binder. The fiber coating obtained was ca. 50 μm of thickness and 35 mm in length. The evaluation of the sorbent capacity was carried out through the determination of toluene, ethylbenzene, xylene isomers and styrene in water samples following the headspace sampling modality (15 min, 30 °C). The fiber was then transferred to a 10 mL vial which was sealed and heated at 110 °C for 15 min in the headspace module of the instrument to achieve the thermal desorption of the analytes. Then 2.5 mL of the headspace generated were injected in the gas chromatograph-mass spectrometer for analytes separation and quantitation. The detection and quantitation limits obtained for 10 mL of sample were 0.15 and 0.5 ng mL−1 (0.6 and 2 ng mL−1 for toluene). The optimized procedure was applied to the determination of the selected volatile compounds in waters collected from different locations. The recovery values obtained (average recovery ca. 92%) demonstrated the usefulness of the carbon nanocones/disks as sorbent material in solid-phase microextraction.  相似文献   

20.
Advanced smoke generation systems, such as the Borgwaldt RM20S® smoking machine used in combination with the BAT exposure chamber, allow for the generation, dilution and delivery of fresh cigarette smoke to cell or tissue cultures for in vitro cell culture analyses. Recently, our group confirmed that the Borgwaldt RM20S® is a reliable tool to generate and deliver repeatable and reproducible exposure concentrations of whole smoke to in vitro cultures [1]. However, the relationship between dose and diluted smoke components found within the exposure chamber has not been characterized. The current study focused on the development of a headspace stir bar sorptive extraction (HSSE) method to chemically characterize some of the vapor phase components of cigarette smoke generated by the Borgwaldt RM20S® and collected within a cell culture exposure chamber. The method was based on passive sampling within the chamber by HSSE using a Twister™ stir bar. Following exposure, sorbed analytes were recovered using a thermal desorption unit and a cooled injection system coupled to gas chromatograph/mass spectrometry for identification and quantification. Using the HSSE method, sixteen compounds were identified. The desorption parameters were assessed using ten reference compounds and the following conditions led to the maximal response: desorption temperature of 200 °C for 2 min with cryofocussing temperature of −75 °C. During transfer of the stir bars to the thermal desorption system, significant losses of analytes were observed as a function of time; therefore, the exposure-to-desorption time interval was kept at the minimum of 10 ± 0.5 min. Repeatability of the HSSE method was assessed by monitoring five reference compounds present in the vapor phase (10.1–12.9% RSD) and n-butyl acetate, the internal standard (18.5% RSD). The smoke dilution precision was found to be 17.2, 6.2 and 11.7% RSD for exposure concentrations of 1, 2 and 5% (v/v) cigarette vapor phase in air, respectively. A linear response of analyte abundance was observed as a function of dilution. Extrapolation to 100% (v/v) cigarette vapor phase, i.e., undiluted smoke, gave yields for the five compounds ranging from 6 to 450 ng for 10 min exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号