首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Many natural superhydrophobic structures have hierarchical two-tier roughness which is empirically known to promote robust superhydrophobicity. We report the wetting and dewetting properties of two-tier roughness as a function of the wettability of the working fluid, where the surface tension of water/ethanol drops is tuned by the mixing ratio, and compare the results to one-tier roughness. When the ethanol concentration of deposited drops is gradually increased on one-tier control samples, the impalement of the microtier-only surface occurs at a lower ethanol concentration compared to the nanotier-only surface. The corresponding two-tier surface exhibits a two-stage wetting transition, first for the impalement of the microscale texture and then for the nanoscale one. The impaled drops are subsequently subjected to vibration-induced dewetting. Drops impaling one-tier surfaces could not be dewetted; neither could drops impaling both tiers of the two-tier roughness. However, on the two-tier surface, drops impaling only the microscale roughness exhibited a full dewetting transition upon vibration. Our work suggests that two-tier roughness is essential for preventing catastrophic, irreversible wetting of superhydrophobic surfaces.  相似文献   

3.
Condensation and freezing of droplets on superhydrophobic surfaces   总被引:1,自引:0,他引:1  
Superhydrophobic coatings are reported as promising candidates for anti-icing applications. Various studies have shown that as well as having ultra water repellency the surfaces have reduced ice adhesion and can delay water freezing. However, the structure or texture (roughness) of the superhydrophobic surface is subject to degradation during the thermocycling or wetting process. This degradation can impair the superhydrophobicity and the icephobicity of those coatings. In this review, a brief overview of the process of droplet freezing on superhydrophobic coatings is presented with respect to their potential in anti-icing applications. To support this discussion, new data is presented about the condensation of water onto physically decorated substrates, and the associated freezing process which impacts on the freezing of macroscopic droplets on the surface.  相似文献   

4.
Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in this paper gives valuable insight into a phenomenon of simultaneous superhydrophobicity and high water droplet adhesion and contributes to a more detailed comprehension of superhydrophobicity overall.  相似文献   

5.
Superhydrophobic surfaces of n-hexatriacontane were fabricated in a single-step process. The low surface energy of n-hexatriacontane together with the randomly distributed micro- and nanoscale roughness features guarantees very large contact angles and a small roll-off angle for water drops. The advantage of n-hexatriacontane superhydrophobic surfaces is their stability in the sense that they are impervious to chemical reactions and retain their wetting characteristics over a long period of time, as confirmed by XPS analysis and contact angle measurements.  相似文献   

6.
The amazing water repellency of many biological surfaces, exemplified by lotus leaves, has recently received a great deal of interest. These surfaces, called superhydrophobic surfaces, exhibit water contact angles larger than 150 degrees and a low contact angle hysteresis because of both their low surface energy and heterogeneously rough structures. In this paper, we suggest a biomimetic method, "biosilicification", for generating heterogeneously rough structures and fabricating superhydrophobic surfaces. The superhydrophobic surface was prepared by a combination of the formation of heterogeneously rough, nanosphere-like silica structures through biosilicification and the formation of self-assembled monolayers of fluorosilane on the surface. The resulting surface exhibited the water contact angle of 160.1 degrees and the very low water contact angle hysteresis of only 2.3 degrees, which are definite characteristics of superhydrophobic surfaces. The superhydrophobic property of our system probably resulted from the air trapped in the rough surface. The wetting behavior on the surface was in the heterogeneous regime, which was totally supported by Cassie-Baxter equation.  相似文献   

7.
Dynamic effects of bouncing water droplets on superhydrophobic surfaces   总被引:1,自引:0,他引:1  
Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water repellent properties. Superhydrophobic surfaces may be generated by the use of hydrophobic coating, roughness, and air pockets between solid and liquid. Dynamic effects, such as the bouncing of a droplet, can destroy the composite solid-air-liquid interface. The relationship between the impact velocity of a droplet and the geometric parameters affects the transition from the solid-air-liquid interface to the solid-liquid interface. Therefore, it is necessary to study the dynamic effect of droplets under various impact velocities. We studied the dynamic impact behavior of water droplets on micropatterned silicon surfaces with pillars of two different diameters and heights and with varying pitch values. A criterion for the transition from the Cassie and Baxter regime to the Wenzel regime based on the relationship between the impact velocity and the parameter of patterned surfaces is proposed. The trends are explained based on the experimental data and the proposed transition criterion. For comparison, the dynamic impact behavior of water droplets on nanopatterned surfaces was investigated. The wetting behavior under various impact velocities on multiwalled nanotube arrays also was investigated. The physics of wetting phenomena for bouncing water droplet studies here is of fundamental importance in the geometrical design of superhydrophobic surfaces.  相似文献   

8.
A novel strategy for a tunable sigmoidal wetting transition from superhydrophobicity to superhydrophilicity on a continuous nanostructured hybrid film via gradient UV-ozone (UVO) exposure is presented. Along a single wetting gradient surface (40 mm), we could visualize the superhydrophobic (thetaH2O > 165 degrees and low contact angle hysteresis) transition (165 degrees > thetaH2O > 10 degrees ) and superhydrophilic (thetaH2O < 10 degrees within 1 s) regions simply through the optical images of water droplets on the surface. The film is prepared through layer-by-layer assembly of negatively charged silica nanoparticles (11 nm) and positively charged poly(allylamine hydrochloride) with an initial deposition in a fractal manner. The extraordinary wetting transition on chemically modified nanoparticle layered surfaces with submicrometer- to micrometer-scale pores represents a competition between the chemical wettability and hierarchical roughness of surfaces as often occurs in nature (e.g., lotus leaves, insect wings, etc).  相似文献   

9.
Contact angle hysteresis (CAH) is critical to superhydrophobicity of a surface. This study proposes a free energy thermodynamic analysis (of a 2-D model surface) that significantly simplifies calculations of free energy barrier associated with CAH phenomena. A microtextured surface with pillar structure, typical of one used in experimental studies, is used as an example. We demonstrate that the predicted CAH and equilibrium contact angles are consistent with experimental observations and predictions of Wenzel's and Cassie's equations, respectively. We also establish a criterion for transition between noncomposite and composite wetting states. The results and methodology presented can potentially be used for designing superhydrophobic surfaces.  相似文献   

10.
Superhydrophobic surfaces present properties of self‐cleaning and unwetting that could be applied in the optics field. The wetting and dewetting of these superhydrophobic surfaces are compared to that of only hydrophobic polyethylene. The contact angle of such a surface varies from 170° to 130–140°. The dewetting is studied using two techniques of dynamic dewetting measurements. The behaviors of surfaces, dried or prewetted with water vapor, are different. The dewetting of the dried surface previously prewetted is discontinuous, and slower than that of the dry one. This specific behavior is interpreted as a roughness effect on trapped water. However, its dewetting is still faster than a corresponding hydrophobic surface like polytetrafluoroethylene (PTFE). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, the authors researched the preparations of superhydrophilic/superhydrophobic surfaces on commercial cup stock polyethylene coated papers by using sparked aluminum nanoparticles deposited on substrates through a sparking process. In this stage, the surface was porous and showed superhydrophilic properties. The samples were then annealed in air at various temperatures and some transformed to superhydrophobicity. It is well known that a suitable roughness in combination with low surface energy has been required to obtain superhydrophobic surfaces. Therefore, it is believed that during annealing process, when polyethylene is diffused from the substrate through the nanoparticle films and the superhydrophobic characteristics were created. The scanning electron microscope images showed that the film surfaces had a fluffy structure for both the as‐deposited and the annealed samples. However, the atomic force microscopy phase images showed completely different surface properties. Moreover, the X‐ray photoelectron spectroscopy spectra showed different surface chemical compositions. The experimental results revealed that the working temperature to produce superhydrophobic surfaces depended on the sparked film thickness. Furthermore, in order to prove the assumption explained above, glass and poly (methyl methacrylate) were also used as substrates.  相似文献   

12.
The impact of picoliter-sized water droplets on superhydrophobic CF(4) plasma fluorinated polybutadiene surfaces is investigated with high-speed imaging. Variation of the surface topography by plasmachemical modification enables the dynamics of wetting to be precisely controlled. Final spreading ratios as low as 0.63 can be achieved. A comparison of the maximum spreading ratio and droplet oscillation frequencies to models described in the literature shows that both are found to be much lower than theoretically predicted.  相似文献   

13.
A novel method to fabricate superhydrophobic surfaces using electrophoretic deposition (EPD) is presented. EPD presents a readily scalable, customizable, and potentially low cost surface manufacturing process. Low surface energy materials with high surface roughness are achieved using EPD of unstable hydrophobic SiO(2) particle suspensions. The effect of suspension stability on surface roughness is quantitatively explored with optical absorbance measurements (to determine suspension stability) and atomic force microscopy (to measure surface roughness). Varying suspension pH modulates suspension stability. Contrary to most applications of EPD, we show that superhydrophobic surfaces favor mildly unstable suspensions since they result in high surface roughness. Particle agglomerates formed in unstable suspensions lead to highly irregular films after EPD. After only 1 min of EPD, we obtain surfaces with low contact angle hysteresis and static contact angles exceeding 160°. We also present a technique to enhance the mechanical durability of the superhydrophobic surfaces by adding a polymeric binder to the suspension prior to EPD.  相似文献   

14.
In the present work, we investigate wetting phenomena on freshly prepared nanostructured porous silicon (nPS) with tunable properties. Surface roughness and porosity of nPS can be tailored by controlling fabrication current density in the range 40-120 mA/cm(2). The length scale of the characteristic surface structures that compose nPS allows the application of thermodynamic wettability approaches. The high interaction energy between water and surface is determined by measuring water contact angle (WCA) hysteresis, which reveals Wenzel wetting regime. Moreover, the morphological analysis of the surfaces by atomic force microscopy allows predicting WCA from a semiempiric model adapted to this material.  相似文献   

15.
Superhydrophobicity of biological surfaces has recently been studied intensively with the aim to design artificial surfaces. It has been revealed that nearly all of the superhydrophobic surfaces consist of the intrinsic hierarchical structures. However, the role of such structures has not been completely understood. In this study, different scales of hierarchical structures have been thermodynamically analyzed using a 2-D model. In particular, the free energy (FE) and free energy barrier (FEB) for the composite wetting states are calculated, and the effects of relative pillar height (h(r)) and relative pillar width (a(r)) on contact angle (CA) and contact angle hysteresis (CAH) have been investigated in detail. The results show that if the geometrical parameter ratio is the same (e.g., a:b:h = 2:2:1), the equilibrium CA for the composite of the three-, dual-, and single- scale roughness structures is 159.8°, 151.1°, and 138.6°, respectively. Furthermore, the nano- to microstructures of such surfaces can split a large FEB into many small ones and hence can decrease FEB; in particular, a hierarchical geometrical structure can lead to a hierarchical "FEB structure" (e.g., for a dual-scale roughness geometrical structure, there is also a dual-scale FEB structure). This is especially important for a droplet to overcome the large FEBs to reach a stable superhydrophobic state, which can lead to an improved self-cleaning property. Moreover, for extremely small droplets, the secondary or third structure (i.e., submicrostructure or nanostructure) can play a dominant role in resisting the droplets into troughs, so that a composite state can be always thermodynamically favorable for such a hierarchical structured system.  相似文献   

16.
A facile method using layer-by-layer assembly of silica particles is proposed to prepare raspberry-like particulate films for the fabrication of superhydrophobic surfaces. Silica particles 0.5 microm in diameter were used to prepare a surface with a microscale roughness. Nanosized silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. After surface modification with dodecyltrichlorosilane, the advancing and receding contact angles of water on the dual-sized structured surface were 169 and 165 degrees , respectively. The scale ratio of the micro/nano surface structure and the regularity of the particulate films on the superhydrophobic surface performance are discussed.  相似文献   

17.
The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies.  相似文献   

18.
Contact line and contact angle dynamics in superhydrophobic channels   总被引:1,自引:0,他引:1  
The dynamics of the wetting and movement of a three-phase contact line confined between two superhydrophobic surfaces were studied using a mean-field free-energy lattice Boltzmann model. Principle features of superhydrophobic surfaces, such as trapped vapor/air between rough microstructures, high contact angles, reduced contact angle hysteresis, and low resistance to fluid flow, were all observed. Movement of the three-phase contact line over a well-patterned superhydrophobic surface displays a periodic stick-jump-slip behavior, while the dynamic contact angle changes accordingly from maximum to minimum. Two regimes were found for the flow velocity as a function of surface roughness and can be related directly to the balance between driving force and flow resistance. This work provides a better understanding of dynamic wetting and fluid flow behaviors over superhydrophobic surfaces and hence could be useful in related applications.  相似文献   

19.
The self-assembled films of methyloctyldimethoxysilane (MODMS) and fluorooctylmethyldimethoxysilane (FODMS) were prepared on silicon surfaces and evaluated with AFM, water contact angle measurement, and X-ray photoelectron spectroscopy. Superhydrophobic surfaces were obtained by cooperation of MODMS and FODMS self-assembly with surface roughening. The results showed that preparing closely packed self-assembled films and fabricating surface nanometer-scale and micrometer-scale binary roughness can achieve superhydrophobic films with a water contact angle larger than 156 degrees. The difference between solution deposition and chemical vapor deposition is also investigated. Moreover, superhydrophobic surfaces created with MODMS and FODMS show the different water-adhesion effects, which could have great significance on liquid microtransport in microfluid devices.  相似文献   

20.
Reported here is a facile synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces. Taking this nanoporous polymer as a media, superhydrophobicity is rapidly imparted onto three typical kinds of substrates, including paper, transparent polydimethylsiloxane (PDMS), and finger skin. Quantitative characterization showed that the adhesion between the water droplet and polymer-coated substrates decreased significantly compared to that on the original surface, further indicating the effective wetting mode transformation. The nanoporous polymer coating would open a new door for facile, rapid, safe, and larger scale fabrication of superhydrophobic surfaces on general substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号