首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mononuclear copper(II) complexes with the unsymmetrical tridentate ligand 2-[((imidazol-2-ylmethylidene)amino)ethyl]pyridine (HL), [Cu(HL)(H2O)](ClO4)2.2H2O (1) and [Cu(HL)Cl2] (2), have been prepared and characterized. The X-ray analysis of 2 revealed that the copper(II) ion assumes a pentacoordinated square pyramidal geometry with an N3Cl2 donor set. When 1 and 2 are treated with an equimolecular amount of potassium hydroxide, the deprotonation of the imidazole moiety promotes a self-assembled process, by coordination of the imidazolate nitrogen atom to a Cu(II) center of an adjacent unit, leading to the polynuclear complexes [[Cu(L)(H2O)](ClO4)]n (3) and [[Cu(L)Cl].2H2O]n (4). Variable-temperature magnetic data are well reproduced for one-dimensional infinite regular chain systems with J = -60.3 cm(-1) and g = 2.02 for 3 and J = -69.5 cm(-1) and g = 2.06, for 4. When 1 is used as a "ligand complex" for [M(hfac)2] (M = Cu(II), Ni(II), Mn(II), Zn(II)) in a basic medium, only the imidazolate-bridged trinuclear complexes [Cu(L)(hfac)M(hfac)2Cu(hfac)(L)] (M = Zn(II), Cu(II)) (5, 6) can be isolated. Nevertheless, the analogous complex containing Mn(II) as the central metal (7) can be prepared from the precursor [Cu(HL)Cl2] (2). All the trinuclear complexes are isostructural. The structures of 5 and 6 have been solved by X-ray crystallographic methods and consist of well-isolated molecules with Ci symmetry, the center of symmetry being located at the central metal. Thus, the copper(II) fragments are in trans positions, leading to a linear conformation. The magnetic susceptibility data (2-300 K), which reveal the occurrence of antiferromagnetic interactions between copper(II) ions and the central metal, were quantitatively analyzed for symmetrical three-spin systems to give the coupling parameters JCuCu = -37.2 and JCuMn = -3.7 cm(-1) with D = +/-0.4 cm(-1) for 6 and 7, respectively. These magnetic behaviors are compared with those for analogous systems and discussed on the basis of a localized-orbital model of exchange interactions.  相似文献   

2.
Tridentate chelate complexes M[LX?·?2H2O], where M?=?Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have been synthesized from the Schiff base L?=?N-[1-(3-aminopropyl)imidazole]salicylaldimine and X?=?Cl. Microanalytical data, UV-Vis, magnetic susceptibility, IR, 1H-NMR, mass, and EPR techniques were used to confirm the structures. Electronic absorption spectra and magnetic susceptibility measurements suggest square-planar geometry for copper complex and octahedral for other metal complexes. EPR spectra of copper(II) complex recorded at 300?K confirm the distorted square-planar geometry of the copper(II) complex. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species and one fungus. The electrochemical behavior of the copper complex was studied by cyclic voltammetry.  相似文献   

3.
Copper(II) binuclear complexes [Cu(II)(1-phenylamidino-O-n-propylurea)tn]2 (H2O)2(Cl2)2 (1), [Cu(II)(1-phenylamidino-O-n-butylurea)tn]2(H2O)2(Cl2)2(2), [Cu(II)(1-phenylamidino-O-i-butylurea)tn]2(H2O)2(Cl2)2(3), and [Cu(II)(1-phenyamidino-O-i-butylurea)en]2(H2O)2(Cl2)2 (4) have been reported. The binuclear complexes 3 and 4 crystallize in a monoclinic structure with unit cell dimensions a = 15.252(17) A, b = 14.682(10) A, c = 13.606(13) A, and beta = 111.2(1) degrees and a = 15.278(35) A, b = 14.665(21) A, c = 13.603(27) A, and beta = 111.1(1) degrees , respectively. The EPR spectra of all the solid complexes at room temperature consisted of fine-structure transitions (DeltaM(s) = 1) with zero-field splitting (ZFS) of 0.0500 cm(-1) and a half-field signal (DeltaM(s) = 2) at ca. 1600 G, suggesting the formation of binuclear complexes (S = 1). From the observed ZFS, we estimated the average Cu-Cu distance. From the temperature dependence of the EPR signal intensity, we evaluated the isotropic exchange interaction constant J. It appears that the exchange interaction between the two interacting spins of the binuclear complexes is ferromagnetic in nature. The formation of ferromagnetically coupled copper binuclear complexes was further confirmed from the high magnetic-moment values at room temperature. When the EPR spectra were recorded in the temperature range 300-400 K, it was observed that the triplet-state EPR signal completely and irreversibly disappeared at ca. 380 K with the appearance of a new signal attributable to the mononuclear complex (S = 1/2). Thermal studies of these complexes in this temperature range suggested the loss of two water molecules, which might be responsible for binding two mononuclear species. EPR, IR, and thermal studies indicate a long-range ferromagnetic exchange mediated through hydrogen bonding between copper(II) ions (S = 1/2).  相似文献   

4.
Mononuclear and binuclear copper(II) complexes (1-8) with two ONS donor thiosemicarbazone ligands {salicylaldehyde 3-hexamethyleneiminyl thiosemicarbazone [H2L1] and salicylaldehyde 3-tetramethyleneiminyl thiosemicarbazone [H2L2]} have been prepared and physico-chemically characterized. IR, electronic and EPR spectra of the complexes have been obtained. The thiosemicarbazones bind to metal as dianionic ONS donor ligands in all the complexes except in [Cu(HL1)2] (2) and [Cu(HL2)2] (6). In compounds 2 and 6 the ligands are coordinated as monoanionic HL- ones. The magnetic susceptibility measurements indicate that all the complexes are paramagnetic. In complex [(CuL1)2] (1), the magnetic moment value is lower than the expected spin only value. In all the complexes g(||)>g( perpendicular)>2.0023 and G values within the range 2.5-3.5 are consistent with dx2-y2 ground state. The complexes were given the formula as [(CuL1)2] (1); [Cu(HL1)2] (2); [CuL1bpy] (3); [CuL1phen] (4); [CuL1gamma-pic].2H2O (5); [Cu(HL2)2] (6); [CuL2py].3H2O (7); [CuL2bipy] (8). The structure of the compound 8 have been solved by single crystal X-ray crystallography and was found to be distorted square pyramid around copper(II) ion.  相似文献   

5.
Comba P  Lienke A 《Inorganic chemistry》2001,40(20):5206-5209
Approximative density-functional theory calculations indicate that the tetradentate ligand L (L = 2,4-bis-(2-pyridyl)-3,7-diaza-[3.3.1]-bicyclononane) enforces an unusual and strong binding of a co-ligand (substrate) to a copper(II) center. The co-ligand in [Cu(L)(Cl)](+) completes a square-pyramidal coordination around copper(II) and binds in the equatorial plane rather than on the apical position. This configuration is a stable geometric isomer for the model complex [Cu(NH3)2(imine)2(Cl)](+), but it is disfavored by approximately 10 kJ mol(-1) and not commonly observed for CuN4 chromophores with a monodentate co-ligand. The equatorial coordination increases the bond energy of the copper(II)-chloride bond by approximately 80 kJ mol(-1), and similar results are expected for other copper(II)-L-substrate complexes, some of which show strong catalytic activity or unusual stability. Despite the enforced configuration, L does not impose significant steric strain on the copper(II) center but is well preorganized for the Jahn-Teller labile ion in this unusual geometry. The preorganization extends to the orientation of the pyridine donors (torsion angle around the copper-pyridine bond), and this seems to be of importance in the reactivity of the copper-L complexes and their derivatives.  相似文献   

6.
A new sugar-derived Schiff's base ligand N-(3-tert-butyl-2-hydroxybenzylidene)-4,6-O-ethylidene-beta-D-glucopyranosylamine (H3L1) has been developed which afforded the coordinatively labile, alcoholophilic trinuclear Cu(II) complex [Cu3(L1)2(CH3OH)(H2O)] (1). Complex 1 has been further used in the synthesis of a series of alcohol-bound complexes with a common formula of [Cu3(L1)2(ROH)2] (R = Me (2), Et (3), nPr (4), nBu (5), nOct (6)). X-ray structural analyses of complexes 2-6 revealed the collinearity of trinuclear copper(II) centers with Cu-Cu-Cu angles in the range of 166-172 degrees . The terminal and central coppers are bound with NO3 and O4 atoms, respectively, and exhibit square-planar geometry. The trinuclear structures of 2-6 can be viewed as the two {Cu(L1)}- fragments capture a copper(II) ion in the central position, which is further stabilized by a hydrogen-bonding interaction between the alcohol ligands and the sugar C-3 alkoxo group. Complex 2 exhibits a strong antiferromagnetic interaction between the Cu(II) ions (J = -238 cm(-1)). Diffusion of methanol into a solution of complex 1 in a chloroform/THF mixed solvent afforded the linear trinuclear complex [Cu(3)(L1)2(CH3OH)2(THF)2] (7). The basic structure of 7 is identical to complex 2; however, THF binding about the terminal coppers (Cu-O(THF) = 2.394(7) and 2.466(7) A) has introduced the square-pyramidal geometry, indicating that the planar trinuclear complexes 2-6 are coordinatively unsaturated and the terminal metal sites are responsible for further ligations. In the venture of proton-transfer reactions, a successful proton transfer onto the saccharide C-3 alkoxo group has been achieved using 4,6-O-ethylidene-d-glucopyranose, resulting in the self-assembled tetranuclear complex, [Cu4(HL1)4] (8), consisting of the mononuclear Cu(II) chiral building blocks, {Cu(HL1)}.  相似文献   

7.
Formation constants of copper(II), zinc(II), calcium(II) and gadolinium(III) with N,N'-bis(2-hydroxyiminopropionyl) propane-1,3-diamine (L2) have been studied at 25 degrees C and an ionic strength of 0.15 mol dm(-3). The reasonably high formation constants of the copper with this ligand are due to the ease with which the metal ion deprotonates the amide moieties. The square-planar coordination of L2 towards copper as predicted from UV-visible data may also account for the high selectivity of L2 towards the metal ion. Octanol/water partition coefficients of Cu(II)-L2 complexes indicate that although these complexes are largely hydrophilic, approximately 1.86% of the [CuL2H(-1)] species goes into the octanol layer and hence may promote dermal absorption of copper with a calculated penetration rate of 1.24 x 10(-5) cm h(-1). The [CuL2H(-1)] complex which predominates at pH 7.4 is a poor mimic of native copper-zinc superoxide dismutase. Blood-plasma simulation studies predict that, despite the high concentration of zinc and calcium in vivo, L2 is able to increase the low-molecular-mass fraction of copper. Biodistribution experiments using 64Cu-labelled [CuL2H(-1)] indicate an initial high uptake of this species in the liver, but it is predominantly excreted through the renal system.  相似文献   

8.
The equilibrium distribution of species formed between Cu(II) and N-acetylneuraminic (sialic) acid (I, LH) at 298 K has been determined using a two-dimensional (2D) simulation analysis of electron paramagnetic resonance (EPR) spectra. In acidic solutions (pH values < 4), the major species present are Cu(2+), [CuL]+ [logbeta = 1.64(4)], and [CuL2] [logbeta = 2.77(5)]. At intermediate pH values (4.0 < pH < 7.5), [CuL2H-1]- [logbeta = -2.72(7)] and two isomers of [CuLH-1] [logbeta (overall) = -3.37(2)] are present. At alkaline pH values (7.5 < pH < 11), the major species present is [CuL2H-2]2-, modeled as three isomers with unique giso and Aiso values [logbeta (overall) = -8.68(3)]. Two further species ([CuLH-3]2- and [CuL2H-3]3-) appear at pH values > 11. It is proposed that [CuL]+ most likely features I coordinated via the deprotonated carboxylic acid group (O1) and the endocyclic oxygen atom (OR) forming a five-membered chelate ring. Select Cu(II)-I species of the form [CuLH-1] may feature I acting as a dianionic tridentate chelate, via oxygen atoms derived from O1, OR, and one deprotonated hydroxy group (O7 or O8) from the glycerol tail. Alternatively, I may coordinate Cu(II) in a bidentate fashion as the tert-2-hydroxycarboxylato (O1,O2) dianion. Spectra predicted for Cu(II)-I complexes in which I is coordinated in either a O1,OR {I1-} or O1,O2 {I2-} bidentate fashion {e.g., [CuL]+ (O1,O R), [CuL2] (bis-O1,O R), [CuLH-1] (isomer: O1, O2), [CuL2H-1]- (O1, O R; O1, O2), and [CuL2H-2]2- (isomer: bis-O1, O2)} have "irregular" EPR spectra that are ascribed to the existence of Cu(II)-I(monomer) <==> Cu(II)-I(polymer) equilibria. The formation of polymeric Cu(II)-I species will be favored in these complexes because the glycerol-derived hydroxyl groups at the complex periphery (O, 7O, 8O9) are available for further Cu(II) binding. The presence of polymeric Cu(II)-I species is supported by EPR spectral data from solutions of Cu(II) and the homopolymer of I, colominic acid (Ipoly). Conversely, spectra predicted for Cu(II)-I complexes where I is coordinated in a {I2-} tridentate {e.g., [CuLH-1] (isomer: O1, O R, O7, or O8) and [CuL2H-2]2- (isomer: bis-O1,O R,O7, or O8)} or tetradentate fashion {I3-} {e.g., [CuLH-3]2- (O1, O R, O, 8O9)} are typical for mononuclear tetragonally elongated Cu(II) octahedra. In this latter series of complexes, the tendency toward the formation of polymeric Cu(II)-I analogues is small because the polydentate I effectively wraps up the mononuclear Cu(II) center. This work shows that Cu(II) could potentially mediate the chemistry of sialoglycoconjugate-containing proteins in human biology, such as the sialylated amyloid precursor protein of relevance to Alzheimer's disease.  相似文献   

9.
A tetranuclear mixed ligand copper(II) complex of a pyrazole containing Schiff base and a hydroxyhexahydropyrimidylpyrazole and copper(II) and nickel(II) complexes of the Schiff base having N-donor atoms have been investigated. A 2 equiv amount of 5-methyl-3-formylpyrazole (MPA) and 2 equiv of 1,3-diamino-2-propanol (1,3-DAP) on reaction with 1 equiv of copper(II) nitrate produce an unusual tetranuclear mixed ligand complex [Cu4(L1)2(L2)2(NO3)2] (1), where H2L1 = 1,3-bis(5-methyl-3-formylpyrazolylmethinimino)propane-2-ol and HL2 = 5-methyl-3-(5-hydroxyhexahydro-2-pyrimidyl)pyrazole. In contrast, a similar reaction with nickel(II) nitrate leads to the formation of a hygroscopic intractable material. On the other hand, the reaction involving 2 equiv of MPA and 1 equiv each of 1,3-DAP and various copper(II) salts gives rise to two types of products, viz. [Cu(T3-porphyrinogen)(H2O)]X2 (X = ClO4, NO3, BF4 (2)) (T3-porphyrinogen = 1,6,11,16-tetraza-5,10,15,20-tetrahydroxy-2,7,12,17-tetramethylporphyrinogen) and [Cu(H2L1)X]X x H2O (X = Cl (3), Br (4)). The same reaction carried out with nickel(II) salts also produces two types of compounds [Ni(H2L1)(H2O)2]X2 [X = ClO4 (5), NO3 (6), BF4 (7)] and [Ni(H2L1)X2] x H2O [X = Cl (8), Br (9)]. Among the above species 1, 3, and 5 are crystallographically characterized. In 1, all four copper atoms are in distorted square pyramidal geometry with N4O chromophore around two terminal copper atoms and N5 chromophore around two inner copper atoms. In 3, the copper atom is also in distorted square pyramidal geometry with N4Cl chromophore. The nickel atom in 5 is in a distorted octahedral geometry with N4O2 chromophore, where the metal atom is slightly pulled toward one of the axial coordinated water molecules. Variable-temperature (300 to 2 K) magnetic susceptibility measurements have been carried out for complex 1. The separations between the metal centers, viz., Cu(1)...Cu(2), Cu(2)...Cu(2)A, and Cu(2)A...Cu(1)A are 3.858, 3.89, and 3.858 A, respectively. The overall magnetic behavior is consistent with strong antiferromagnetic interactions between the spin centers. The exchange coupling constants between Cu(1)...Cu(2) and Cu(2)...Cu(2A) centers have turned out to be -305.3 and -400.7 cm(-1), respectively, resulting in a S = 1/2 ground state. The complexes are further characterized by UV-vis, IR, electron paramagnetic resonance, and electrochemical studies.  相似文献   

10.
Russian Journal of Coordination Chemistry - Two new Schiff base copper(II) complexes, [Cu2L2] (I) and [Cu2L(NCNCN)2]n (II), where L is the dianionic form of...  相似文献   

11.
S-Nitrosothiols RSNO represent circulating reservoirs of nitric oxide activity in the plasma and play intricate roles in protein function control in health and disease. While nitric oxide has been shown to reductively nitrosylate copper(II) centers to form copper(I) complexes and ENO species (E = R(2)N, RO), well-characterized examples of the reverse reaction are rare. Employing the copper(I) β-diketiminate [Me(2)NN]Cu, we illustrate a clear example in which an RS-NO bond is cleaved to release NO(gas) with formation of a discrete copper(II) thiolate. The addition of Ph(3)CSNO to [Me(2)NN]Cu generates the three-coordinate copper(II) thiolate [Me(2)NN]CuSCPh(3), which is unstable toward free NO.  相似文献   

12.
The title complexes of general formula [Cu(HL)Cl2] or [Cu(L)Cl] were isolated from boiling EtOH. The thiosemicarbazones have been characterized by their 1H- and 13C-n.m.r., i.r. and electronic spectra. The i.r., electronic and e.s.r. spectra of the copper(II) complexes are compared with data on previously studied complexes. The antitumour and antiviral activities of the thiosemicarbazones and their complexes are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Three copper(II) complexes, 1, 2, and 3 with L(1), L(2) and L(3) [L(1) = 2-(2-aminoethyl)-pyridine; L(2) = 2-(N-ethyl-2-aminoethyl)-pyridine; L(3) = 3,3'-iminobis(N,N-dimethylpropylamine)], respectively, were synthesized and characterized. Addition of nitric oxide gas to the degassed acetonitrile solution of the complexes were found to result in the reduction of the copper(II) center to copper(I). In cases of complexes 1 and 2, the formation of the [Cu(II)-NO] intermediate prior to the reduction of Cu(II) was evidenced by UV-visible, solution FT-IR and X-band EPR spectroscopic studies. However, for complex 3, the formation of [Cu(II)-NO] has not been observed. DFT calculations on the [Cu(II)-NO] intermediate generated from complex 1 suggest a distorted square pyramidal geometry with the NO ligand coordinated to the Cu(II) center at an equatorial site in a bent geometry. In the case of complex 1, the reduction of the copper(II) center by nitric oxide afforded ligand transformation through diazotization at the primary amine site in acetonitrile solution; whereas, in an acetonitrile-water mixture, it resulted in 2-(pyridine-2-yl)ethanol. On the other hand, in cases of complexes 2 and 3, it was found to yield N-nitrosation at the secondary amine site in the ligand frameworks. The final organic products, in each case, were isolated and characterized by various spectroscopic studies.  相似文献   

14.
Ternary copper(II) complexes [Cu(l-met)B(Solv)](ClO4) (1-4), where B is a N,N-donor heterocyclic base like 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2'],3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (L-Hmet =L-methionine). Complex 2, structurally characterized by X-ray crystallography, shows a square pyramidal (4 + 1) coordination geometry in which the N,O-donor L-methionine and N,N-donor heterocyclic base bind at the basal plane and a solvent molecule is coordinated at the axial site. The complexes display a d-d band at approximately 600 nm in DMF and exhibit a cyclic voltammetric response due to the Cu(II)/Cu(I) couple near -0.1 V in DMF-Tris-HCl buffer. The complexes display significant binding propensity to the calf thymus DNA in the order: 4(dppz) > 3(dpq) > 2(phen> 1(bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or red light (632.8 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The DNA cleavage activity of the dpq complex is found to be significantly more than its dppz and phen analogues.  相似文献   

15.
Abstract

The synthesis of the new ligand 1,8-bis(quinolyloxy)-3,6-dithiaoctane (1) and the corresponding Cu(II), Cu(I) and Co(II) complexes is reported. The crystal and molecular structure of the copper(II) complex, [Cu(1)](ClO4)2.3H2O, has been determined by X-ray diffraction methods. The complex crystallizes in the orthorhombic space group Fddd, with cell data Z = 16, a = 20.326(2), b = 20.879(3) and c = 28.308(4)Å. The structure consists of discrete [Cu(1)]?2+ cations separated by (structurally disordered) perchlorate anions and three lattice water molecules per cation. The coordination geometry about the copper atom is pseudo-octahedral with the quinoline nitrogen and thioether sulfur atoms at the equatorial positions and the ether oxygen atoms at the axial positions. 1H NMR line-broadening experiments indicate that electron-transfer self-exchange reactions between the copper(I) and copper(II) complexes of (1) is immeasurably slow on the NMR time-scale. The coordination chemistry of (1) is compared with its oxygen analogue, 1,8-bis(quinolyloxy)-3,6-dioxaoctane.  相似文献   

16.
The coordination chemistries of the potential tetradentate ligands N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethylenediamine, H4[L1], the unsaturated analogue glyoxal-bis(2-hydroxy-3,5-di-tert-butylanil), H2[L2], and N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2-dimethylpropylenediamine, H4[L3], have been investigated with nickel(II), palladium(II), and copper(II). The complexes prepared and characterized are [Ni(II)(H3L1)2] (1), [Ni(II)(HL2)2].5/8CH2Cl2 (2), [Ni(II)(L3**)] (3), [Pd(II)(L3**)][Pd(II)(H2L3) (4), and [Cu(II)(H2O)(L4)] (5), where (L4)2- is the oxidized diimine form of (L3)4- and (L3**)2- is the bis(o-iminosemiquinonate) diradical form of (L3)4-. The structures of compounds 1-5 have been determined by single crystal X-ray crystallography. In complexes 1 and 2, the ligands (H3L1)- and (HL2)- are tridentate and the nickel ions are in an octahedral ligand environment. The oxidation level of the ligands is that of an aromatic o-aminophenol. 1 and 2 are paramagnetic (mu(eff) approximately 3.2 mu(B) at 300 K), indicating an S = 1 ground state. The diamagnetic, square planar, four-coordinate complexes 3 and [Pd(II)(L3**)] in 4 each contain two antiferromagnetically coupled o-iminobenzosemiquinonate(1-) pi radicals. Diamagnetic [Pd(II)(H2L3)] in 4 forms an eclipsed dimer via four N-H.O hydrogen bonding contacts which yields a nonbonding Pd.Pd contact of 3.0846(4) A. Complex 5 contains a five-coordinate Cu(II) ion and two o-aminophenolate(1-) halves in (L4)2-. The electrochemistries of complexes 3 and 4a ([Pd(II)(L3**)] of 4) have been investigated, and the EPR spectra of the monocations and -anions are reported.  相似文献   

17.
Ternary copper(II) complexes [Cu(py2phe)B](ClO4)2 (1-3), where py2phe is a tripodal ligand N,N-bis[2-(2-pyridyl)ethyl]-2-phenylethylamine and B is a heterocyclic base (viz., 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2), or dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3)), are prepared and their DNA-binding and photoinduced DNA-cleavage activities are studied. Complex 1 has been structurally characterized by single crystal X-ray crystallography. The molecular structure shows an axially elongated square-pyramidal (4 + 1) coordination geometry in which the phen ligand binds at the basal plane. The tripodal ligand py2phe displays an axial-equatorial binding mode with the amine nitrogen bonded at the axial site. A chemically significant CH-pi interaction involving the CH moiety of the phenyl group of the tripodal ligand and the aromatic ring of phen is observed. The complexes display good binding propensity to calf thymus DNA giving a relative order of 3 (dppz) > 2 (dpq) > 1 (phen). The DNA binding constants (K(b)) for 1-3, determined from absorption spectral studies, are 6.2 x 10(3), 1.0 x 10(4), and 5.7 x 10(4) M(-1), respectively. The complexes show chemical nuclease activity in the presence of 3-mercaptopropionic acid as a reducing agent forming hydroxyl radicals as the cleavage active species. The photoinduced DNA-cleavage activity of the complexes has been studied using UV radiation of 365 nm and red light of 632.8 and 694 nm. The phen complex in absence of any photosensitizing moiety does not show any DNA cleavage upon photoirradiation. The dpq and dppz ligands with their photoactive quinoxaline and phenazine moieties display significant photoinduced DNA-cleavage activity. The dppz complex is more active than its dpq analogue because of the better steric protection of the DNA-bound photosensitizing dppz ligand from the solvent molecules. Control experiments reveal the formation of singlet oxygen in the light-induced DNA-cleavage reactions. The observed efficient photoinduced DNA-cleavage activity of 2 and 3 is akin to the "light switch" effect known for the tris-chelates of ruthenium(II).  相似文献   

18.
A series of FL(n) (n = 1-5) ligands, where FL(n) is a fluorescein modified with a functionalized 8-aminoquinoline group as a copper-binding moiety, were synthesized, and the chemical and photophysical properties of the free ligands and their copper complexes were investigated. UV-visible spectroscopy revealed a 1:1 binding stoichiometry for the Cu(II) complexes of FL(1), FL(3), and FL(5) in pH 7.0 buffered aqueous solutions. The reactions of FL(2) or FL(4) with CuCl(2), however, appear to produce a mixture of 1:1 and 1:2 complexes, as suggested by Job's plots. These binding modes were modeled by the synthesis and X-ray crystal structure determination of Cu(II) complexes of 2-[(quinolin-8-ylamino)methyl]phenol (modL), employed as a surrogate of the FL(n) ligand family. Two kinds of crystals, [Cu(modL)(2)](BF(4))(2) and [Cu(2)(modL')(2)(CH(3)OH)](BF(4))(2) (modL' = 2-[(quinolin-8-ylamino)methyl]phenolate), were obtained. The structures suggest that one oxygen and two nitrogen atoms of the FL(n) ligands most likely bind to Cu(II). Introduction of nitric oxide (NO) to pH 7.0 buffered aqueous solutions of Cu(FL(n)) (1 microM CuCl(2) and 1 microM FL(n)) at 37 degrees C induces an increase in fluorescence. The fluorescence response of Cu(FL(n)) to NO is direct and specific, which is a significant improvement over commercially available small molecule-based probes that are capable of detecting NO only indirectly. The NO-triggered fluorescence increase of Cu(FL(5)) occurs by reduction of Cu(II) to Cu(I) with concomitant dissociation of the N-nitrosated fluorophore ligand from copper. Spectroscopic and product analyses of the reaction of the FL(5) copper complex with NO indicated that the N-nitrosated fluorescein ligand (FL(5)-NO) is the species responsible for fluorescence turn-on. Density functional theory (DFT) calculations of FL(5) versus FL(5)-NO reveal how N-nitrosation of the fluorophore ligand brings about the fluorescence increase. The copper-based probes described in the present work form the basis for real-time detection of nitric oxide production in living cells.  相似文献   

19.
Ternary copper(II) complexes [Cu(l-lys)B(ClO4)](ClO4)(1-4), where B is a heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (l-lys =l-lysine). Complex 2, structurally characterized by X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor l-lysine and N,N-donor heterocyclic base bind at the basal plane and the perchlorate ligand is bonded at the elongated axial site. The crystal structure shows the presence of a pendant cationic amine moiety -(CH2)4NH3+ of l-lysine. The one-electron paramagnetic complexes display a d-d band in the range of 598-762 nm in DMF and exhibit cyclic voltammetric response due to Cu(II)/Cu(I) couple in the range of 0.07 to -0.20 V vs. SCE in DMF-Tris-HCl buffer. The complexes having phenanthroline bases display good binding propensity to the calf thymus DNA giving an order: 4 (dppz) > 3 (dpq) > 2 (phen)> 1 (bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or visible light (694 nm ruby laser) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The amino acid l-lysine bound to the metal shows photosensitizing effect at red light, while the heterocyclic bases are primarily DNA groove binders. The dpq and dppz ligands display red light-induced photosensitizing effects in copper-bound form.  相似文献   

20.
Russian Journal of Coordination Chemistry - New water-soluble copper(II) bis-N,O-chelate complexes [Cu(L2)2Cl2] (I), [Cu2(L1)2Cl4] (II), and [Cu(L1)2Cl]2[CuCl4] (III) (L1, L2 = pyridyl-containing...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号