首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a nonuniform distribution of porosity on flow localization and failure in a porous material is analyzed numerically. The void density distribution and properties used to characterize the material behavior were obtained from measurements on partially consolidated and sintered iron powder. The calculations were carried out using an elastic viscoplastic constitutive relation for porous plastic solids. Local material failure is incorporated into the model through the dependence of the flow potential on void volume fraction. The region modelled is a small portion of a larger body, subject to various triaxial stress conditions. Both plane strain and axisymmetric deformations are considered with imposed periodic boundary conditions. Interactions between regions with higher void fractions promote plastic flow localization into a band. Local failure occurs by void growth and coalescence within the band. The results suggest a failure criterion based on a critical void volume fraction that is only weakly dependent on stress history. The critical void fraction does. however, depend on the initial void distribution and material hardening characteristics.  相似文献   

2.
Infinite band calculations indicate that the process of flow localization in voided solids is highly sensitive to non-uniformity in void distribution. In this paper, a model is proposed for an elastic-plastic solid with an excess of voids in a disk-shaped cluster embedded in a uniform background distribution. The model is used to study the effect of a void cluster on plastic flow localization. Substantial reductions in ductility due to nonuniformity only occur for quite large clusters when the triaxiality of the overall stresses is low, as in uniaxial tension. At higher stress triaxialities, a small cluster can be severely deleterious.  相似文献   

3.
The effect of void nucleation is incorporated in a recently proposed material model that accounts for a combination of kinematic hardening and isotropic hardening of a porous ductile material. Since each of plastic dilatancy, void nucleation and yield surface curvature have a strong influence on predictions of plastic flow localization, the present material model can be used to study the interaction of these effects. Nucleation controlled by the plastic strain as well as nucleation controlled by the maximum normal stress on the particle-matrix interface are modelled. The predictions of the material model, for various combinations of parameters, are illustrated by analyses of shear band formation under plane strain or axisymmetric conditions, and by analyses of necking in biaxially stretched sheets.  相似文献   

4.
A mechanism of plastic flow localization in ductile matter near microvoids is studied. The voids with the size-scale of micromillimeter exist in sheet specimens under tensile loading, and the plastic strain field around voids is obtained by digital image processing of deformed grids. The size growth of the microvoids, the spacing change of the neighboring voids, and the development of shear bands in the ligament between the voids, are presented by experimental results accompanied with the plastic strain distribution, that gives good interpretation to the process of void growth and coalescence with the flow localization in the ligaments. The project supported by the National Natural Science Foundation of China  相似文献   

5.
The effects of void band orientation and crystallographic anisotropy on void growth and linkage have been investigated. 2D model materials were fabricated by laser drilling a band of holes into the gage section of sheet tensile samples using various orientation angles with respect to the tensile axis normal. Both copper and magnesium sheets have been studied in order to examine the role of crystallographic anisotropy on the void growth and linkage processes. The samples were pulled in uniaxial tension inside the chamber of an SEM, enabling a quantitative assessment of the growth and linkage processes. The void band orientation angle has a significant impact on the growth and linkage of the holes in copper. As the void band orientation angle is increased from 0° to 45°, the processes of coalescence and linkage are delayed to higher strain values. Furthermore, the mechanism of linkage changes from internal necking to one dominated by shear localization. In contrast, the void band orientation does not have a significant impact on the void growth and linkage processes in magnesium. Void growth in these materials occurs non-uniformly due to interactions between the holes and the microstructure. The heterogeneous nature of deformation in magnesium makes it difficult to apply a coalescence criterion based on the void dimensions. Furthermore, the strain at failure does not show a relationship with the void band orientation angle. Failure associated with twin and grain boundaries interrupts the plastic growth of the holes and causes rapid fracture. Therefore, the impact of the local microstructure outweighs the effects of the void band orientation angle in this material.  相似文献   

6.
Influence of void nucleation on ductile shear fracture at a free surface   总被引:7,自引:0,他引:7  
An approximate continuum model of a ductile, porous material is used to study the influence of the nucleation and growth of micro-voids on the formation of shear bands and the occurrence of surface shear fracture in a solid subject to plane strain tension. Bifurcation into diffuse modes is analysed for a plane strain tensile specimen described by these constitutive relations, which account for a considerable plastic dilatancy due to void growth and for the possibility of non-normality of the plastic flow law. In particular, bifurcation into surface wave modes and the possible influence of such modes triggering shear bands is investigated. For solids with initial imperfactions such as a surface undulation, a local material inhomogeneity on an inclusion colony, the inception and growth of plastic flow localization is analysed numerically. Both the formation of void-sheets and the final growth of cracks in the shear bands is described numerically. Some special features of shear band development in the solid obeying non-normality are studied by a simple model problem.  相似文献   

7.
The current study presents finite element simulations of shear localization along the interface between cohesionless granular soil and bounding structure under large shearing movement. Micro-polar (Cosserat) continuum approach is applied in the framework of elasto-plasticity in order to overcome the numerical problems of localization modeling seen in the conventional continuum mechanics. The effects of different micro-polar kinematic boundary conditions, along the interface, on the evolution and location of shear band are shown by the numerical results. Furthermore, shear band thickness is also investigated for its dependence on the initial void ratio, vertical pressure and mean grain size. Here, the distribution and evolution of static and kinematic quantities are the main focuses regarding infinite layer of micro-polar material during plane shearing, especially with advanced large movement of bounding structure. The influence of such movement has not been investigated yet in the literature. Based on the results obtained from this study, shear localization appears parallel to the direction of shearing. It occurs either in the middle of granular layer or near boundaries, regarding the assumed micro-polar kinematic boundary conditions at the bottom and top surfaces of granular soil layer. Narrower shear band is observed in lower rotation resistance of soil particles along the interface. It is emphasized that the displacement magnitude of bounding structure has significant effect on the distribution and evolution of state variables and polar quantities in the granular soil layer. However, continuous displacement has no meaningful effect on the thickness of shear band. Here, smooth distributions of void ratio and shear stress components are obtained within the shear band, what the other previous numerical investigations did not receive. Despite indirect linking of Lade’s model to the critical state soil mechanics, state variables tend towards asymptotical stationary condition in large shear deformation.  相似文献   

8.
Large strain finite element calculations of unit cells subjected to triaxial axisymmetric loadings are presented for plastically orthotropic materials containing a periodic distribution of aligned spheroidal voids. The spatial distribution of voids and the plastic flow properties of the matrix are assumed to respect transverse isotropy about the axis of symmetry of the imposed loading so that a two-dimensional axisymmetric analysis is adequate. The parameters varied pertain to load triaxiality, matrix anisotropy, initial porosity and initial void shape so as to include the limiting case of penny-shaped cracks. Attention is focussed on comparing the individual and coupled effects of void shape and material anisotropy on the effective stress–strain response and on the evolution of microstructural variables. In addition, the effect of matrix anisotropy on the mode of plastic flow localization is discussed. From the results, two distinct regimes of behavior are identified: (i) at high triaxialities, the effect of material anisotropy is found to be persistent, unlike that of initial void shape and (ii) at moderate triaxialities the influence of void shape is found to depend strongly on matrix anisotropy. The findings are interpreted in light of recent, microscopically informed models of porous metal plasticity. Conversely, observations are made in relation to the relevance of these results in the development and calibration of a broader set of continuum damage mechanics models.  相似文献   

9.
A micromechanics model based on the theoretical framework of plastic localization into a band introduced by Rice is developed. The model consists of a planar band with a square array of equally sized cells, with a spherical void located in the centre of each cell. The periodic arrangement of the cells allows the study of a single unit cell for which fully periodic boundary conditions are applied. The micromechanics model is applied to analyze failure by ductile rupture in experiments on double notched tube specimens subjected to combined tension and torsion carried out by the present authors. The stress state is characterized in terms of the stress triaxiality and the Lode parameter. Two rupture mechanisms can be identified, void coalescence by internal necking at high triaxiality and void coalescence by internal shearing at low triaxiality. For the internal necking mechanism, failure is assumed to occur when the deformation localizes into a planar band and is closely associated with extensive void growth until impingement of voids. For the internal shearing mechanism, a simple criterion based on the attainment of a critical value of shear deformation is utilized. The two failure criteria capture the transition between the two rupture mechanisms successfully and are in good agreement with the experimental result.  相似文献   

10.
We have extended the Rice-Tracey model (J. Mech. Phys. Solids 17 (1969) 201) of void growth to account for the void size effect based on the Taylor dislocation model, and have found that small voids tend to grow slower than large voids. For a perfectly plastic solid, the void size effect comes into play through the ratio εl/R0, where l is the intrinsic material length on the order of microns, ε the remote effective strain, and R0 the void size. For micron-sized voids and small remote effective strain such that εl/R0?0.02, the void size influences the void growth rate only at high stress triaxialities. However, for sub-micron-sized voids and relatively large effective strain such that εl/R0>0.2, the void size has a significant effect on the void growth rate at all levels of stress triaxiality. We have also obtained the asymptotic solutions of void growth rate at high stress triaxialities accounting for the void size effect. For εl/R0>0.2, the void growth rate scales with the square of mean stress, rather than the exponential function in the Rice-Tracey model (1969). The void size effect in a power-law hardening solid has also been studied.  相似文献   

11.
The main aim of this paper is to opens out the meso-mechanism of void growth and coalescence in the matrix materials with graded strain-hardening exponent distribution. For this end, detailed finite element computations of a representative cylindrical cell containing a spherical void have been carried out. According to the FE analyses, significant effects of the strain-hardening exponent gradient (SEG) in the matrix on the void growth and coalescence are revealed: (1) In the homogeneous materials, the void growth and coalescence are slightly dependent on the strain-hardening exponent, however, the SEG distribution in the matrix can increase remarkably the void growth rate and decrease seriously the void coalescence strain. (2) The critical void shapes in the homogeneous materials are mainly governed by the macroscopic stress triaxiality, but due to earlier plastic flow localization in the softer matrix layer, the SEG distribution in the matrix has very significant effects on the deformed void shapes, especially when the stress triaxiality is lower. (3) When the triaxial stress levels are lower, in the homogeneous materials, the shape change mode of the void evolution is dominate so the void growth rate is very low; however, the SEG distribution in the matrix can bring the volume change mode out, as a result of increasing the void growth rate. (4) Comparisons of the numerical results with the existing damage model indicate that the classic damage model cannot give satisfying prediction to the void growth in both the homogeneous strain-hardening matrix and the SEG materials. On the basis of large numbers of numerical computations, a new damage model, which can uniformly describe the void growing in the homogeneous and plasticity gradient materials, is suggested. A mass of element computations have validated that the new damage model can give satisfying agreement with the FE results of cell model.  相似文献   

12.
Summary The main objective of the paper is the investigation of the influence of the anisotrophy and plastic spin effects on criteria for adiabatic shear band localization of plastic deformation. A theory of thermoplasticity is formulated within a framework of the rate-type covariance material structure with a finite set of internal state variables. The theory takes into consideration such effects as plastic non-normality, plastic-induced anisotropy (kinematic hardening), micro-damage mechanism, thermomechanical coupling and plastic spin. The next objective of the paper is to focus attention on cooperative phenomena in presence of the plastic spin, and the discussion on the influence of synergetic effects on localization criteria. A particular constitutive law for the plastic spin is assumed. The necessary condition for a localized plastic deformation region to be formed is obtained. This condition is accomplished by the assumption that some eigenvalues of the instantaneous adiabatic acoustic tensor vanish. A procedure has been developed which allows us to discuss two separate groups of effects on the localization phenomenon along a shear band. Plastic spin, spatial covariance and kinematic hardening effects are investigated at an isothermal process in an undamaged solid. In the second case, an adiabatic process in a damaged solid is discussed when the spatial covariance terms and the plastic spin are neglected. Here the thermomechanical coupling, micro-damage mechanism and kinematic hardening effects are examined. For both cases, the criteria for adiabatic shear band localization are obtained in an exact analytical form. Particular attention is focused on the analysis of the following effects: (i) plastic non-normality; (ii) plastic spin; (iii) covariant terms; (iv) plastic strain-induced anisotropy; (v) micro-damage mechanism; (vi) thermomechanical couplings. Cooperative phenomena are considered, and synergetic effects are investigated. A discussion of the influence of the plastic spin, kinematic hardening and covariant terms on the shear band localization conditions is presented. A numerical estimation of the effects discussed is given. Received 24 April 1997; accepted for publication 23 December 1997  相似文献   

13.
Substantial void growth in metals constitutes a problem in many industrial operations that utilize superplastic deformation. This is because of the likelihood of material failure due to such growth. Hence, there is a need to study void growth mechanisms in an effort to understand the parameters governing it. In this work, numerical and experimental studies of void growth, and the parameters that affect it, in a superplastically deforming (SPD) metal have been performed. In the numerical studies, using the finite-element method, a 1×2 sized thin plate (i.e. plane stress conditions) of a viscoplastic material with pre-existing holes has been subjected to a constant extension rate. The experimental studies were performed under similar conditions to the numerical ones and provided for qualitative comparison. The parameters affecting void growth in SPD are: m (the strain-rate sensitivity), void size (i.e. diameter) and the number (density) of existing voids. The results showed that increased m values produced strengthening and decreased the rate of void growth. In addition, larger initial void size (or, equivalently, a larger initial void fraction) had the effect of weakening the specimen through causing accelerated void growth. Finally, multiple holes had the effect of increasing the metal ductility by reducing the extent of necking and its onset. This was realized through diffusing the plastic deformation at the different hole sites and reducing the stress concentration. The numerical results were in good qualitative agreement with the experiment and suggested the need to refine existing phenomenological void growth models to include the dependence on the void fraction.  相似文献   

14.
In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented for metals described by the reformulated Fleck–Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered. Furthermore, it is illustrated how different hardening functions affect the formation of shear bands.  相似文献   

15.
孙毅  王铎 《力学季刊》1995,16(2):87-95
本文在作者提出的含孔洞材料下限本构方程的基础上,采用了初始缺陷带模型对微孔洞生长及分布对板材拉伸过程中变形局部影响进行了,分析着重研究了细观损演化规律对变形局部化模式及临界应变的影响,并成功预测了AISI4340钢板材拉伸试件变形局部化换稳为及失稳方向。  相似文献   

16.
An inelastic rate-dependent crystalline constitutive formulation and specialized computational schemes have been developed and used to obtain a detailed understanding of the interrelated physical mechanisms that can result in ductile material failure in rate-dependent porous crystalline materials subjected to finite inelastic deformations. The effects of void growth and interaction and specimen necking on material failure have been investigated for a single material cell, with a discrete cluster of four voids, where geometrical parameters have been varied to result in seven unique periodic and random void arrangements. The interrelated effects of void distribution and geometry, strain hardening, geometrical softening, localized plastic strains and slip-rates, and hydrostatic stresses on failure paths and ligament damage in face centered cubic (f.c.c.) crystalline materials have been studied. Results from this study are consistent with experimental observations that ductile failure can occur either due to void growth parallel to the stress axis, which results in void coalescence normal to the stress axis, or void interaction along bands, which are characterized by intense shear-strain localization and that intersect the free surface at regions of extensive specimen necking.  相似文献   

17.
18.
Some recent experiments on sub-micron and nano-sized metallic glass (amorphous alloy) specimens have shown that the shear localization process becomes more stable and less catastrophic when compared to the response exhibited by large sample sizes. This leads to the discovery that the shear localization process and fracture can be delayed by decreasing sample volume. In this work we develop a non-local and finite-deformation-based constitutive model using thermodynamic principles and the theory of micro-force balance to study the causes for the aforementioned observations. The constitutive model has also been implemented into a commercially available finite-element program by writing a user-material subroutine. With the aid of finite-element simulations, our constitutive model predicts that metallic glass samples have the intrinsic ability to exhibit: (a) the delaying of (catastrophic) shear localization with decreasing sample size, and (b) homogeneous deformation behavior for sample volumes smaller than the shear band nucleus.The cause for the observations listed above is the increasing influence of a non-local interaction stress with decreasing sample volume. This interaction stress has energetic origins and it affects plastic deformation due to the strong coupling between plastic shearing and free-volume generation. Akin to strain-gradient plasticity theory, the role of the interaction stress is to strengthen the material at locations where the defect density/free volume is higher compared to the rest of metallic glass sample.  相似文献   

19.
Large strain finite element method is employed to investigate the effect of straining mode on void growth. Axisymmetric cell model embedded with spherical void is controlled by constant triaxiality loading, while plane-stress model containing a circular void is loaded by constant ratio of straining. Elastic-plastic material is used for the matrix in both cases. It is concluded that, besides the known effect of triaxiality, the straining mode which intensifies the plastic concentration around the void is also a void growth stimulator. Experimental results are cited to justify the computation results. This paper is jointly supported by the National Natural Science Foundation of China (19872064), the Chinese Academy of Sciences (KJ951-1-201) and the Laboratory for Nonlinear mechanics of Continuous Media of the Institute of Mechanics  相似文献   

20.
The generality of localization of plastic deformation, which is observed at the stage of linear work hardening for HCP, BCC and FCC mono- and polycrystals of pure metals and alloys, is considered. It was found previously that the motion rate of localized flow autowave is related to the reciprocal value of the work hardening coefficient by a linear law, which is universal in character. This is further substantiated by the results of the given study. The waves of plastic flow localization are found to have dispersion law. It has been established that in order to address the autowave of localized deformation, a quasi-particle may be introduced. The quasi-particle’s characteristics have been defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号