首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we report a new "green" method to synthesize Zn(1-x)Cd(x)Se (x = 0-1) and stable red-green-blue tricolor Zn(1-x)Cd(x)Se core/shell nanocrystals using only low cost, phosphine-free and environmentally friendly reagents. The first excitonic absorption peak and photoluminescence (PL) position of the Zn(1-x)Cd(x)Se nanocrystals (the value of x is in the range 0.005-0.2) can be fixed to any position in the range 456-540 nm. There is no red or blue shift in the entire reaction process. Three similar sizes of alloyed Zn(1-x)Cd(x)Se nanocrystals with blue, green, and yellow emissions were successfully selected as cores to synthesize high quality blue, green, and red core/shell nanocrystal emitters. For the synthesis of core/shell nanocrystals with a high quantum yield (QY) and stability, the selection of shell materials has been proven to be very important. Therefore, alternative protocols have been used to optimize thick shell growth. ZnSe/ZnSe(x)S(1-x) and CdS/Zn(1-x)Cd(x)S have been found as an excellent middle multishell to overcoat between the alloyed Zn(1-x)Cd(x)Se core and ZnS outshell. The QYs of the as-synthesized core/shell alloyed Zn(1-x)Cd(x)Se nanocrystals can reach 40-75%. The Cd content is reduced to less than 0.1% for Zn(1 -x)Cd(x)Se core/shell nanocrystals with emissions in the range 456-540 nm. More than 15 g of high quality Zn(1-x)Cd(x)Se core/shell nanocrystals were prepared successfully in a large scale, one-pot reaction. Importantly, the emissions of such thick multishell nanocrystals are not susceptible to ligand loss and stability in various physiological conditions.  相似文献   

2.
Zhang W  Zhou X  Zhong X 《Inorganic chemistry》2012,51(6):3579-3587
Unlike Mn doped quantum dots (d-dots), the emission color of Cu dopant in Cu d-dots is dependent on the nature, size, and composition of host nanocrystals (NCs). The tunable Cu dopant emission has been achieved via tuning the particle size of host NCs in previous reports. In this paper, for the first time we doped Cu impurity in Zn(x)Cd(1-x)S alloyed NCs and tuned the dopant emission in the whole visible spectrum via variation of the stoichiometric ratio of Zn/Cd precursors in the host Zn(x)Cd(1-x)S alloyed NCs. A facile noninjection and low cost approach for the synthesis of Cu:Zn(x)Cd(1-x)S d-dots was reported. The optical properties and structure of the obtained Cu:Zn(x)Cd(1-x)S d-dots have been characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The influences of various experimental variables, including Zn/Cd ratio, reaction temperature, and Cu dopant concentration, on the optical properties of Cu dopant emission have been systematically investigated. The as-prepared Cu:Zn(x)Cd(1-x)S d-dots did show PL emission but with quite low quantum yield (QY) (typically below 6%). With the deposition of ZnS shell around the Cu:Zn(x)Cd(1-x)S core NCs, the PL QY increased substantially with a maximum value of 65%. More importantly, the high PL QY can be preserved when the initial oil-soluble d-dots were transferred into aqueous media via ligand replacement by mercaptoundeconic acid. In addition, these d-dots have thermal stability up to 250 °C.  相似文献   

3.
High-quality Zn(x)Cd(1-x)Se nanocrystals have been successfully prepared at high temperature by incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe nanocrystals. With increasing Zn content, a composition-tunable emission across most of the visible spectrum has been demonstrated by a systematic blue-shift in emission wavelength. The photoluminescence (PL) properties for the obtained Zn(x)Cd(1-x)Se nanocrystals (PL efficiency of 70-85%, fwhm = 22-30 nm) are comparable to those for the best reported CdSe-based QDs. In particular, they also have good PL properties in the blue spectral range. Moreover, the alloy nanocrystals can retain their high luminescence (PL efficiency of over 40%) when dispersed in aqueous solutions and maintain a symmetric peak shape and spectral position under rigorous experimental conditions. A rapid alloying process was observed at a temperature higher than "alloying point". The mechanism of the high luminescence efficiency and stability of Zn(x)Cd(1-x)Se nanocrystals is explored.  相似文献   

4.
A silanization technique of hydrophobic quantum dots (QDs) was applied to SiO(2)-coated CdSe/Cd(x)Zn(1-x)S QDs to precisely control the SiO(2) shell thickness and retain the original high photoluminescence (PL) properties of the QDs. Hydrophobic CdSe/Cd(x)Zn(1-x)S core-shell QDs with PL peak wavelengths of 600 and 652 nm were prepared by a facile organic route by using oleic acid (OA) as a capping agent. The QDs were silanized by using partially hydrolyzed tetraethyl orthosilicate by replacing surface OA. These silanized QDs were subsequently encapsulated in a SiO(2) shell by a reverse micelles synthesis. The silanization plays an important role for the QDs to be coated with a homogeneous SiO(2) shell and retain a high PL efficiency in water. Transmission electron microscopy observation shows that the shells are 1-9 nm with final particle sizes of 10-25 nm, depending on the initial QD size. In the case of short reaction time (6 h), the QDs were coated with a very thin SiO(2) layer because no visible SiO(2) shell was observed but transferred into the water phase. The silica coating does not change the PL peak wavelength of the QDs. The full width at half-maximum of PL was decreased 4 nm after coating for QDs emitting at both 600 and 652 nm. The PL efficiency of the SiO(2)-coated is up to 40%, mainly determined by the initial PL efficiency of the underlying CdSe/Cd(x)Zn(1-x)S QDs.  相似文献   

5.
Zn(x)Cd(1-x)Se alloy nanowires, with composition x = 0, 0.2, 0.5, 0.7, and 1, have been successfully synthesized by a chemical vapor deposition (CVD) method assisted with laser ablation. The as-synthesized alloy nanowires, 60-150 nm in diameter and several tens of micrometers in length, complied with a typical vapor-liquid-solid (VLS) growth mechanism. The Zn(x)Cd(1-x)Se nanowires are single crystalline revealed from high-resolution transmission electron microscopic (HRTEM) images, selected area electron diffraction (SAED) patterns, and X-ray diffraction (XRD) measurement. Compositions of the alloy nanowires can be adjusted by varying the precursor ratios of the laser ablated target and the CVD deposition temperature. Crystalline structures of the Zn(x)Cd(1-x)Se nanowires are hexagonal wurtzite at x = 0, 0.2, and 0.5 with the [0 1 -1 0] growth direction and zinc blende at x = 0.7 and 1 with the [1 -1 1] growth direction. Energy gaps of the Zn(x)Cd(1-x)Se nanowires, determined from micro-photoluminescence (PL) measurements, change nonlinearly as a quadratic function of x with a bowing parameter of approximately 0.45 eV. Strong PL from the Zn(x)Cd(1-x)Se nanowires can be tuned from red (712 nm) to blue (463 nm) with x varying from 0 to 1 and has demonstrated that the alloy nanowires have potential applications in optical and sensory nanotechnology. Micro-Raman shifts of the longitudinal optical (LO) phonon mode observed in the Zn(x)Cd(1-x)Se nanowires show a one-mode behavior pattern following the prediction of a modified random element isodisplacement (MREI) model.  相似文献   

6.
Truly alloyed PbS(x)Se(1-x) (x = 0-1) nanocrystals (~5 nm in size) have been prepared, and their resulting optical properties are red-shifted systematically as the sulfur content of the materials increases. Their optical properties are discussed using a modified Vegard's approach and the bowing parameter for these nanoalloys is reported for the first time. The alloyed structure of the nanocrystals is supported by the energy-filtered transmission electron microscope images of the samples, which show a homogeneous distribution of sulfur and selenium within the nanocrystals. X-ray photoelectron spectroscopy studies on ligand-exchanged nanocrystals confirmed the expected stoichiometry and various oxidized species.  相似文献   

7.
Optical absorption (OA), magnetic force microscopy (MFM), and photoluminescence (PL) measurements were employed to study Cd(1-x)Mn(x)S nanoparticles (NPs), grown in a glass matrix, at different x-concentrations. The formation of two well defined groups of NPs with different sizes was detected by OA spectra at room temperature and confirmed by MFM images, from which they were identified as quantum dots (QDs) and bulk-like nanocrystals (NCs). Emissions from luminescent states were observed in the temperature dependent PL spectra of both groups of NPs, including those from deep defects which were attributed to the presence of divacancies (V(Cd)-V(S)) in the hexagonal wurtzite structure. Furthermore, we have come up with a model based on rate equations that describes energy transfers involving the excitonic states of QDs, the conduction band of bulk-like NCs, and the shallow virtual levels of NPs. This model was used to fit the integrated PL intensity of the corresponding NP groups, and a good agreement between them confirms that the model suitably describes the temperature dependent carrier dynamics of Cd(1-x)Mn(x)S NPs.  相似文献   

8.
Li S  Zhao Z  Liu Q  Huang L  Wang G  Pan D  Zhang H  He X 《Inorganic chemistry》2011,50(23):11958-11964
Metastable zinc blende CuInSe(2) nanocrystals were synthesized by a hot-injection approach. It was found that the lattice mismatches between zinc blende CuInSe(2) and ZnSe as well as CuInSe(2) and CuInS(2) are only 2.0% and 4.6%, respectively. Thus, alloyed (ZnSe)(x)(CuInSe(2))(1-x) and CuInSe(x)S(2-x) nanocrystals with a zinc blende structure have been successfully synthesized over the entire composition range, and the band gaps of alloys can be tuned in the range from 2.82 to 0.96 eV and 1.43 to 0.98 eV, respectively. These alloyed (ZnSe)(x)(CuInSe(2))(1-x) and CuInSe(x)S(2-x) nanocrystals with a broad tunable band gap have a high potential for photovoltaic and photocatalytic applications.  相似文献   

9.
The ternary molecular nanoclusters [Zn(x)Cd(10-x)Se4(SePh)12(PnPr3)4] (x = 1.8, 1 a; x = 2.6, 1 b) were employed as single-source precursors for the synthesis of high-quality hexagonal Zn(x)Cd(1-x)Se nanocrystals. The tellurium clusters [Zn(x)Cd(10-x)Te4(TePh)12(PnPr3)4] (x = 1.8, 2 a; x = 2.6, 2 b) are equally convenient precursors for the synthesis cubic Zn(x)Cd(1-x)E nanoparticles. The thermolysis of the cluster molecules in hexadecylamine provides an efficient system in which the inherent metal-ion stoichiometry of the clusters is retained in the nanocrystalline products, whilst also affording control of particle size within the 2-5 nm range. In all cases, the nanoparticles are monodisperse, and luminescence spectra exhibit emission energies close to the absorption edge. Analysis of the optical spectra and X-ray diffraction patterns of these materials indicates a metal-ion concentration gradient within the structures of the nanocrystals, with Zn(II) ions predominantly located near the surface of the particles.  相似文献   

10.
Rod-like nanocrystals of the semiconductor alloy (ZnS)(x) (CuInS(2) )(1-x) (ZCIS) have been colloidally prepared by using a one-pot non-injection-based synthetic strategy. The ZCIS nanorods crystallize in the hexagonal wurtzite structure and display preferential growth in the direction of the c axis. The bandgap of these quarternary alloyed nanorods can be conveniently tuned by varying the ratio of ZnS to CuInS(2) . A non-linear relationship between the bandgap and the alloy composition is observed. The ZCIS nanorods are found to exhibit promising photocatalytic behaviour in visible-light-driven degradation of Rhodamine?B.  相似文献   

11.
Mg(x)Zn(1-x)O ternary alloy nanocrystals with hexagonal wurtzite structures were fabricated by using the sol-gel method. X-ray diffraction patterns, UV-vis absorption spectra, and photoluminescence spectra were used to characterize the structural and optical properties of the nanocrystals. For as-prepared nanocrystals, the band gap increases with increasing Mg content. Weak excitonic emission with strong deep-level emission related to oxygen vacancy and interface defects is observed in the photoluminescence spectra at room temperature. Thermal annealing in oxygen was used to decrease the number of defects and to improve the quality of the nanocrystals. In terms of XRD results, the grain sizes of nanocrystals increase with increasing annealing temperature and the lattice constants of alloy are smaller than those of pure ZnO. The band gap becomes narrower with increasing annealing temperature. For Mg(x)Zn(1-x)O nanocrystals (x=0.03-0.15) annealed at temperatures ranging from 500 to 1000 degrees C, intense near-band-edge (NBE) emissions and weak deep-level (DL) emissions are observed. Consequently, the quality of Mg(x)Zn(1-x)O nanocrystals can be improved by thermal annealing.  相似文献   

12.
13.
Alloyed ZnxCd1-xSe quantum dots (QDs) have been successfully prepared at low temperatures by reacting a mixture of Cd(ClO4)2 and Zn(ClO4)2 with NaHSe using cysteine as a surface-stabilizing agent. The photoluminescence (PL) spectra of the alloyed QDs are determined on the basis of the Zn2+/Cd2+ molar ratio, reaction pH, intrinsic Zn2+and Cd2+ reactivities toward NaHSe, concentration of NaHSe, and the kind of thiols. A systematic blue shift in emission wavelength of the alloyed QDs was found with the increase in the Zn mole fraction. This result provides clear evidence of the formation of ZnxCd1-xSe QDs by the simultaneous reaction of Zn2+ and Cd2+ with NaHSe, rather than the formation of separate CdSe and ZnSe nanocrystals or core-shell structure CdSe/ZnSe nanocrystals. The size and inner structure of these QDs are also corroborated by using high-resolution transmission electron microscopy and X-ray powder diffraction. To further understand the formation mechanism, the growth kinetics of Zn0.99Cd0.01Se was studied by measuring the PL spectra at different growth intervals. The results demonstrated that, in the initial stage of growth, Zn0.99Cd0.01Se has a structure with a Cd-rich core and a Zn-rich shell. The post-preparative irradiation of these QDs improved their PL properties, resulting in stronger emission.  相似文献   

14.
It has been an outstanding problem that a semiconducting host in the bulk form can be doped to a large extent, while the same host in the nanocrystal form is found to resist any appreciable level of doping rather stubbornly, this problem being more acute in the wurtzite form compared to the zinc blende one. In contrast, our results based on the lattice parameter tuning in a Zn(x)Cd(1-x)S alloy nanocrystal system achieves approximately 7.5% Mn(2+) doping in a wurtzite nanocrystal, such a concentration being substantially higher compared to earlier reports even for nanocrystal hosts with the "favorable" zinc-blende structure. These results prove a consequence of local strains due to a size mismatch between the dopant and the host that can be avoided by optimizing the composition of the alloyed host. Additionally, the present approach opens up a new route to dope such nanocrystals to a macroscopic extent as required for many applications. Photophysical studies show that the quantum efficiency per Mn(2+) ion decreases exponentially with the average number of Mn(2+) ions per nanocrystal; en route, a high quantum efficiency of approximately 25% is achieved for a range of compositions.  相似文献   

15.
Monodisperse wurtzite CuIn(x)Ga(1-x)S(2) nanocrystals have been synthesized over the entire composition range using a facile solution-based method. Depending on the chemical composition and synthesis conditions, the morphology of the nanocrystals can be controlled in the form of bullet-like, rod-like, and tadpole-like shapes. The band gap of the nanocrystals increases linearly with increasing Ga concentration, with band gap values for the end members being close to those observed in the bulk. Colloidal suspensions of the nanocrystals are attractive for use as inks for low-cost fabrication of thin film solar cells by spin or spray coating.  相似文献   

16.
We report a new strategy based on mercury cation exchange in nonpolar solvents to prepare bright and compact alloyed quantum dots (QDs) (Hg(x)Cd(1-x)E, where E = Te, Se, or S) with equalized particle size and broadly tunable absorption and fluorescence emission in the near-infrared. The main rationale is that cubic CdE and HgE have nearly identical lattice constants but very different band gap energies and electron/hole masses. Thus, replacement of Cd(2+) by Hg(2+) in CdTe nanocrystals does not change the particle size, but it greatly alters the band gap energy. After capping with a multilayer shell and solubilization with a multidentate ligand, this class of cation-exchanged QDs are compact (6.5 nm nanocrystal size and 10 nm hydrodynamic diameter) and very bright (60-80% quantum yield), with narrow and symmetric fluorescence spectra tunable across the wavelength range from 700 to 1150 nm.  相似文献   

17.
InAs(x)Sb(1-x) alloy nanocrystals for the near-infrared, which have quite a monodisperse crystalline structure of 2.5-3.0 nm and are of a zinc blend structure, are developed.  相似文献   

18.
Cu(2)SnS(3) nanocrystals with metastable zincblende and wurtzite structures have been successfully synthesized for the first time. Alloyed (ZnS)(x)(Cu(2)SnS(3))(1-x) and (CuInS(2))(x)(Cu(2)SnS(3))(1-x) nanocrystals with arbitrary composition (0 ≤x≤ 1) and ultra-broad tunable band gaps (3.63 to 0.94 eV) were obtained.  相似文献   

19.
Nanodisk heterostructures consisting of monoclinic Cu(1.94)S and wurtzite CdS have been colloidally synthesized for the first time. Initially, hexagonal-shaped nanodisks of Cu(1.94)S were produced upon thermolysis of a copper complex in a solvent mixture of HDA and TOA at 250 °C. Rapid addition of Cd precursor to the reaction mixture resulted in the partial conversion of Cu(1.94)S into CdS, yielding Cu(1.94)S-CdS nanoheterostructures. The original morphology of the Cu(1.94)S nanodisks was conserved during the transformation. When Zn precursor was added together with the Cd precursor, Cu(1.94)S-Zn(x)Cd(1-x)S nanodisks were generated. These two-component nanostructures are potentially useful in the fabrication of heterojunction solar cells.  相似文献   

20.
以巯基丙酸(MPA)为稳定剂,利用共沉淀法制备了水溶性的Ag掺杂的ZnxCd1-xS合金型纳米晶.Ag掺杂后ZnxCd1-xS纳米晶产生新的发射峰,并且发光效率得到了有效提高.通过改变纳米粒子中Zn/Cd比例可有效地调控ZnxCd1-xS∶Ag纳米晶的吸收带隙宽度,同时可以在425~603 nm之间实现对ZnxCd1-xS∶Ag纳米晶发射峰位的连续调控.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号