首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Standard thermodynamic parameters (Δr G○, Δr H○, TΔr S○) for the complexation reaction of 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-ethanol (H2O-EtOH) solvents are calculated from the data of calorimetric titrations performed at T = 298.15 K. It is established that an increase in the concentration of EtOH in mixed solvent leads to a rise in stability and an increase in the exothermicity of [Ala18C6] molecular complex formation; changes in the energetics of reaction upon a change in the solvent composition are determined by changes in the solvation state of 18C6, which is typical of the reactions of molecular complex formation of 18C6 with D,L-alanine and glycine in water-organic solvents.  相似文献   

2.
The influence of composition of H2O-EtOH solvent on the reaction of formation of a molecular complex of 18-crown-6 ether (18C6) with triglycine (3Gly) has been studied at 298.15 K by a thermochemical method. The standard thermodynamic parameters (Δr G°, Δr H°, and TΔr S°) of the reaction of [3Gly18C6] complex formation in water-ethanol (H2O-EtOH) solvents having an EtOH mole fraction of 0.0, 0.1, 0.15, 0.2, 0.25, 0.30, and 0.50 have been calculated from the data of calorimetric measurements performed on a TAM III titration microcalorimeter. It has been found that an increase in EtOH concentration in the mixed solvent results in an increase in stability of [3Gly18C6] and in an enhancement in exothermicity of its formation reaction. The water-ethanol solvent has an analogous effect on the stability and energetics of the reactions of formation of molecular complexes of 18C6 with glycine, D,L-alanine, and L-phenylalanine.  相似文献   

3.
The standard thermodynamic parameters (Δr G°, Δr H°, TΔr S°) of the reaction of molecular complex formation between 18-crown-6 ether (18C6) and l-phenylalanine (Phe), [Phe18C6], have been obtained from calorimetric titration experiments carried out by means of the microcalorimetric system TAM III (TA Instruments, USA) at T = 298.15 K in water–dimethylsulfoxide (H2O–DMSO) solvents. Results show that the increase of the DMSO concentration in the mixed solvents brings about an increase of the [Phe18C6] complex stability and of the exothermicity of the reaction of complex formation.  相似文献   

4.
The standard thermodynamic parameters (Δr G°, Δr H°, and TΔr S°) of the reaction of molecular complex formation of 18-crown-6 ether (18C6) with d,l-alanine (Ala), [Ala18C6], have been obtained from calorimetric titration experiments carried out using the microcalorimetric system TAM III (TA Instruments, USA) at T = 298.15 K in water–ethanol (H2O–EtOH) solvents at X EtOH = 0 ÷ 0.6 mol fractions. Results show that the increase of the EtOH concentration in solvent brings about an increase of the [Ala18C6] complex stability and of the exothermicity of the reaction of complex formation. The solvation contributions of 18C6, Ala, [Ala18C6] to Δr G° and Δr H° at various X EtOH values are also analyzed.  相似文献   

5.
Using data from calorimetric titration, standard thermodynamic parameters logK , Δr G , Δr H , and TΔr S of the formation of 18-crown-6 ether (18C6) molecular complex with triglycine (3Gly), [3Gly18C6] in H2O-EtOH solvents with contents of ethanol x ranging between 0.0 and 0.5 mole fractions are calculated. Increasing the concentration of EtOH in the solvent is found to raise the reaction’s exothermicity from ?5.9 to ?21.0 kJ mol?1 and logK [3Gly18C6] from 1.10 to 2.53. A comparative analysis of the effect the composition of H2O-EtOH solvent has on the reactions of [3Gly18C6] and [Gly18C6] formation is performed. As in case of [Gly18C6] formation, the changes in the complex’s enthalpy of solvation Δtr H ([3Gly18C6]) are close to the Δtr H (18C6) parameter and differ considerably from the Δtr H (3Gly) value, testifying to the crucial role 18C6 plays in changing the [3Gly18C6] state of solvation. The ratio between solvation contributions from reagents to Δtr G of [3Gly18C6] formation is found to differ from that the one between the corresponding contributions to Δtr H r o : in transferring from water to H2O-EtOH mixtures, the increase in the positive Δtr G (18C6) values is slight and therefore negligible when compared to Δtr G (3Gly).  相似文献   

6.
The integral enthalpies of solution (298.15 K) of DL-α-alanine in water-organic solvent mixtures were measured at organic component concentrations x 2 = 0–0.4 mole fractions. The organic solvents used were acetonitrile (ACN), formamide (FA), N,N-dimethylformamide (DMFA), and N,N-dimethylsulfoxide (DMSO). The standard enthalpies of solution Δsol H o, solvation Δsolv H o, and transfer (Δtr H o) of DL-α-alanine from water to mixed solvents were calculated. The influence of the structure and properties of solutes and mixture composition on solute thermochemical characteristics was considered. The solution of DL-α-alanine in the mixtures studied was endothermic over the whole range of organic component concentrations. The Δsol H o, Δtr H o, and Δsolv H o values as functions of x 2 can pass extrema (DMSO and DMFA), be almost independent of mixed solvent composition (FA), or be exothermic and monotonic functions (ACN). The enthalpy coefficients of pair interactions (h xy ) between DL-α-alanine and organic solvent molecules were calculated. The linear Kamlet-Taft equation was used to correlate the h xy values with the properties of organic solvents.  相似文献   

7.
The formation of 18-crown-6 ether (18C6) complexes with D,L-alanine (Ala) in mixed wateracetone solvents with 0.0, 0.08, 0.17, 0.22, and 0.30 mole fractions of acetone (T = 298.15 K) was investigated by means of calorimetry. Thermodynamic characteristics of the reaction of the molecular [Ala18C6] complex formation (Δr G°, Δr H°, and TΔr S°) were calculated on the basis of calorimetric data. Analysis of solvation contributions of reagents into the enthalpy of the [Ala18C6] formation reaction showed that the changes in the reaction energy when the solvent composition is varied are determined by the changes in the solvate state of 18C6.  相似文献   

8.
The influence of H2O–EtOH and H2O–Acetone mixed solvents at various compositions on the thermodynamics of complex formation reaction between crown ether 18-crown-6 (18C6) and glycine (Gly) was studied. The standard thermodynamic parameters of the complex [Gly18C6] (log K°, Δr H°, Δr S°) were calculated from thermochemical data at 298.15 K obtained by titration calorimetry. The complex stability and its formation enthalpy increase with increasing the non aqueous component concentration in both mixed solvents. The thermodynamic data were discussed on the basis of the solvation thermodynamic approach and the solvation contributions of the reagents and of the complex to the complex stability were analyzed.  相似文献   

9.
Complexation of K+ by 18-crown-6 ether (18C6) in pure water and in acetonitrile–water mixed solvents containing 0.1 mol-dm? 3 (C2H5)4NCl has been systematically studied by isothermal titration calorimetry (ITC) at 293, 298, and 303 K. The formation constant K of the 1:1 [K(18C6)]+ complex and the complexation enthalpy Δ rH were simultaneously determined from the titration data. The logK and Δ rH(kJ-mol? 1) values at 298 K are 2.04, ?26.2 in pure water and 2.23, ?25.0; 2.61, ?24.2; 2.95, ?23.8; 3.48, ?21.0; 3.85, ?19.4; 4.36, ?18.7; and 5.73, ?17.0 in the mixed solvents at x AN (mole fraction of acetonitrile) of 0.043, 0.135, 0.258, 0.448, 0.578, 0.759, and 1.0, respectively. The change in heat capacity for the complex formation, Δ C p °, was also determined by the temperature dependence of Δ rH. Whereas the Δ C p ° is (57 ± 11) and (63 ± 20) J-mol? 1-K? 1 in pure water and in the solvent mixture at x AN = 0.043, respectively, it decreases with increasing x AN. The Δ C p ° values are ?(48 ± 11), ?(110 ± 25), ?(354 ± 40), ?(359 ± 24), and ?(304 ± 30) J-mol? 1-K? 1 at x AN = 0.135, 0.258, 0.448, 0.578, and 0.759, respectively. The changes in complexation thermodynamics (Δ Δ rG, Δ ΔrH, and Δ Δ r S) are discussed in terms of the corresponding transfer thermodynamics of K+, 18-crown-6, and [K(18C6)]+ upon transferring from water to acetonitrile–water mixed solvents. It was found that hydrophobic solvation of the complex [K(18C6)]+ plays an important role in complex formation occurring in water and in the water-rich mixed solvent. Moreover, changes in solvent structure significantly affect the transfer enthalpy and entropy of each species, i.e., K+, 18-crown-6, and [K(18C6)]+. The observed monotonous changes in the complexation Gibbs energy, enthalpy, and entropy with solvent composition are due to the effective compensation of the Δ trG, Δ trH, and Δ tr S for K+ with those for 18-crown-6 and [K(18C6)]+.  相似文献   

10.
The heats of interaction of D,L-α-alanyl-D,L-valine, β-alanyl-β-alanine, and α-alanyl-β-alanine with solutions of nitric acid and potassium hydroxide were determined calorimetrically at 288.15, 298.15, and 308.15 K and solution ion strengths of 0.5, 1.0, and 1.5 in the presence of KNO3 and LiNO3. The heat effects of step dissociation of the dipeptides were calculated using the RRSU universal program. The standard thermodynamic characteristics (Δr H o, Δr G o, Δr S o, and ΔC p o) of proton interaction with the ligands specified were determined. The data obtained were analyzed in terms of Herny concepts. The thermodynamic characteristics of ionization correlated with the structural features of the dipeptides.  相似文献   

11.
Complexation of the 18-crown-6 ether (18C6) with glycine (Gly) in mixed H2O-DMSO solvents with the composition of 0.1, 0.2, and 0.25 mole fraction of DMSO (T = 298.15 K) was studied calorimetrically. Thermodynamic characteristics of the reaction of the formation of the molecular Gly18C6 complex (Δr G°, Δr H°, TΔr S°) were calculated from the calorimetric data. It was established that the change in the stability of the Gly18C6 complex is mainly determined by the predominance of the enthalpy component of the Gibbs energy over the entropy component. It was shown during the analysis of the enthalpy contributions of the reagents to the enthalpy of the reaction of the formation of Gly18C6 that the change in the enthalpy of the reaction upon a change the solvent composition was due to changes in the solvation state of 18C6.  相似文献   

12.
The complexation reactions between Ag+, Hg2+ and Pb2+ metal cations with aza-18-crown-6 (A18C6) were studied in dimethylsulfoxide (DMSO)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes in most cases is 1:1(ML), but in some cases 1:2 (ML2) complexes are formed in solutions. A non-linear behaviour was observed for the variation of log K f of the complexes vs. the composition of the binary mixed solvents. Selectivity of A18C6 for Ag+, Hg2+ and Pb2+ cations is sensitive to the solvent composition and in some cases and in certain compositions of the mixed solvent systems, the selectivity order is changed. The values of thermodynamic parameters (ΔH co, ΔS co) for formation of A18C6–Ag+, A18C6–Hg2+ and A18C6–Pb2+ complexes in DMSO–H2O binary systems were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

13.
The complexation reactions betweenT1+, Hg2+ andAg+ metal cations with 18-Crown-6 (18C6)were studied in acetonitrile (AN)-methanol (MeOH) andbenzonitrile (BN)-methanol (MeOH) binary mixtures at differenttemperatures using the conductometric method. The conductance datashow that the stoichiometry of the complexes in most cases is1 : 1 (ML), but in the case of theTl+ cation, in addition to a1 : 1 complex, a 1 : 2 (ML2)complex is formed in solutions. A non-linear behaviourwas observed for the variation of log Kfof the complexes vs the composition of the binary mixed solvents. The stability of 18C6 complexes with T1+, Hg2+ and Ag+ cations is sensitive to solvent composition and in some cases, the stability order is changed with changingthe composition of the mixed solvents. The values of the thermodynamic parameters (Δ Hc°, Δ Sc°) for formation of 18C6-T1+, 18C6-Hg+2 and the 18C6-Ag+ complexes were obtained from the temperature dependence of the stability constants and the results show that the thermodynamics of the complexationreactions is affected by the nature and composition of the mixed solvents and in most cases, the complexes are enthalpy destabilized but entropy stabilized.  相似文献   

14.
The complexation reactions between K+, Ag+, NH4+, and Hg2+ cations and the macrocyclic ligand, dibenzo-18-crown-6 (DB18C6), were studied in ethylacetate (EtOAc)-dimethylformamide (DMF) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stochiometry of all the complexes is 1:1. A non-linear behavior was observed for the variation of log K f of the complexes versus the composition of binary mixed solvents, which was discussed in terms of heteroselective solvation and solvent-solvent interactions in binary solutions. It was found that the stability order of the complexes changes with changing the composition of the mixed solvents. The sequence of stabilities for the K+, Ag+, NH4+, and Hg2+ complexes with DB18C6 in EtOAc-DMF binary solutions (mol. % DMF 25.0) and (mol. % DMF 50.0) at 25°C is (DB18C6-Ag)+ > (DB18C6-K)+ > (DB18C6-Hg)2+ > (DB18C6-NH4)+, but in the cases of pure DMF and a binary solution of EtOAc-DMF (mol. % DMF 75.0) is (DB18C6-K)+ > (DB18C6-Hg)2+ > (DB18C6-Ag)+ ≈ (DB18C6-NH4)+. The values of thermodynamic quantities (ΔH c o, ΔS c o) for these complexation reactions have been determined from the temperature dependence of the stability constants, and the results show that the thermodynamics of the complexation reactions is affected by the nature and composition of the mixed solvents and, in all cases, positive values of ΔS c o characterize the formation of these complexes. In addition, the experimental results show that the values of entropies for the complexation reactions between K+, Ag+, NH4+, and Hg2+ cations and DB18C6 in EtOAc-DMF binary solutions do not change monotonically with the solvent composition. The text was submitted by the authors in English.  相似文献   

15.
Treatment of [{Ir(COD)(μ-Cl)}2] with excess of the electron-rich olefin [CN(Ar)(CH2)2NAr]2 (abbreviated as (LAr)2, Ar = C6H4Me-p or C6H4OMe-p) affords the ortho-metallated tricycle [Ir(LAr)3], which for Ar = C6H4Me-p (Ia) with HCL yields [Ir(LAr)2(LAr)]Cl (IV); X-ray data show that in IV there is an unexpectedly close Ir?C(o-aryl) contact (2;52(1) Å) involving the “free” LAr which compares with an IrC(o-aryl) distance of 2.09(3) Å in Ia or 2.07(3) Å in the ortho-metallated LAr ligand of complex IV.  相似文献   

16.
The integral enthalpies of solution (T = 298.15 K) of L-α-alanyl-L-α-alanine in aqueous-organic solvents (acetonitrile, 1,4-dioxane, acetone, formamide, N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, and N,N-dimethylsulfoxide) were measured at organic component concentrations x 2 = 0–0.3 mole fractions. The standard enthalpies of solution (Δsol H o) and transfer (Δtr H o) of the peptide from water into mixed solvents were calculated. The influence of the structure and properties of solutes and mixture composition on solute thermochemical characteristics is considered. The enthalpy pair interaction coefficients h xy between L-α-alanyl-L-α-alanine and organic solvent molecules were calculated. The linear Kamlet-Taft four-parameter equation was used to reveal correlation between the h xy values and the properties of organic solvents.  相似文献   

17.
The effect of a water-dimethylsulfoxide (DMSO) solvent on the formation of a molecular complex of 18-crown-6 (18C6) with triglycine (diglycylglycine, 3Gly) is studied via calorimetric titration. It is found that switching from water to an H2O-DMSO mixture with DMSO mole fraction of 0.30 is accompanied by a monotonic increase in the stability of [3Gly18C6] complex, from logK ° = 1.10 to logK ° = 2.44, and an increase in the exothermicity of the reaction of its formation, from ?5.9 to ?16.9 kJ/mol. It is shown that the [3Gly18C6] complex exhibits enthalpy stabilization with negative values of enthalpy and entropy over the investigated range of H2O-DMSO solvents. Analysis of the reagents’ solvation characteristics reveals that the increase in the reaction’s exothermicity of transfer is due to differences in the solvation of [3Gly18C6] and 18C6 with a small solvation contribution from 3Gly. It is concluded that the change in the Gibbs energy of the reaction 3Glysolv + 18C6solv ? [3Gly18C6]solv is due to differences in the change in the solvation state of the complex and the peptide (Δtr G °([3Gly18C6])-Δtr G °(3Gly)).  相似文献   

18.
The complexation reaction of macrocyclic ligand, dibenzo-18-crown-6 (DB18C6) with UO2 2+ cation was studied in ethylacetate-1,2-dichloroethane (EtOAc/DCE), acetonitrile-1,2-dichloroethane (AN/DCE), methanol-1,2-dichloroethane (MeOH/DCE) and ethanol-1,2-dichloroethane (EtOH/DCE) binary solutions at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complex formed between DB18C6 and UO2 2+ cation is affected by the nature of the solvent systems. A non-linear behaviour was observed for changes of log K f of (DB18C6.UO2)+2 complex versus the composition of the binary mixed solvents. The values of thermodynamic quantities (?S°c, ?H°c) for formation of (DB18C6.UO2)+2 complex were obtained from temperature dependence of the stability constant using the van’t Hoff plots. The results show that in most cases, the complex is enthalpy stabilized and in all cases entropy stabilized and both parameters are affected by the nature and composition of the mixed solvents. In addition, the complex formation between dicyclohexyl-18-crown-6 (DCH18C6) and UO2 2+ cation was studied in pure AN and the results were compared with those of the (DB18C6.UO2)+2 complex.  相似文献   

19.
The complexes of Tl+, Pb2+ and Cd2+ cations with the macrocyclic ligand, dicyclohexano-18-crown-6\linebreak(DC18C6) were studied in water/methanol (H2+O/MeOH), water/1-propanol (H2+O/1-PrOH), water/acetonitrile (H2+O/AN), water/dimethylformamide (H2+O/DMF), dimethylformamide/acetonitrile (DMF/AN), dimethylformamide/methanol (DMF/MeOH), dimethylformamide/1-propanol (DMF/1-PrOH) and dimethylformamide/nitromethane (DMF/NM) mixed solvents at 22 °C using differential pulse polarography (DPP), square wave polarography and conductometry. In general, the stability of the complexes was found to decrease with increasing concentration of water in aqueous/non-aqueous mixed solvents with an inverse relationship between the stability constants of the complexes and the concentration of DMF in non-aqueous mixed solvents. The results show that the change in stability of DC18C6.Tl+, vs the composition of solvent in DMF/AN and DMF/NM mixed solvents is apparently different from that in DMF/MeOH and DMF/1-PrOH mixed solvents. While the variation of stability constants of the DC18C6.Tl+ and DC18C6.Pb2+ complexes vs the composition of H2+O/AN mixed solvents is monotonic, an anomalous behavior was observed for variations of log Kf vs the composition of H2+O/1-PrOH and H2+O/MeOH mixed solvents. The selectivity order of the DC18C6 ligand for the cations was found to be Pb2+ > Tl+ > Cd2+.  相似文献   

20.
The complexation reactions between Mg2+,Ca2+,Sr2+ and Ba2+ metal cations with macrocyclic ligand, dicyclohexano-18-crown-6 (DCH18C6) were studied in methanol (MeOH)–water (H2O) binary mixtures at different temperatures using conductometric method . In all cases, DCH18C6 forms 1:1 complexes with these metal cations. The values of stability constants of complexes which were obtained from conductometric data show that the stability of complexes is affected by the nature and composition of the mixed solvents. While the variation of stability constants of DCH18C6-Sr 2+ and DCH18C6-Ba2+versus the composition of MeOH–H2O mixed solvents is monotonic, an anomalous behavior was observed for variations of stability constants of DCH18C6-Mg2+ and DCH18C6-Ca2+ versus the composition of the mixed solvents. The values of thermodynamic parameters (ΔHc°, ΔSc°) for complexation reactions were obtained from temperature dependence of formation constants of complexes using the van’t Hoff plots. The results show that in most cases, the complexation reactions are enthalpy stabilized but entropy destabilized and the values of thermodynamic parameters are influenced by the nature and composition of the mixed solvents. The obtained results show that the order of selectivity of DCH18C6 ligand for metal cations in different concentrations of methanol in MeOH–H2O binary system is: Ba2+>Sr2+>Ca2+> Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号