首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ethylene imine) (PEI) has been adsorbed onto the surface of Laponite clay nanoparticles from aqueous solution at pH 9 in order to produce an efficient hybrid Pickering emulsifier. This facile protocol allows formation of stable sunflower oil-in-water Pickering emulsions via homogenization at 12,000 rpm for 2 min at 20 °C. The effect of varying the extent of PEI adsorption on the Pickering emulsifier performance of the surface-modified Laponite is investigated for five oils of varying polarity using aqueous electrophoresis, thermogravimetric analysis, and laser diffraction studies. A minimum volume-average emulsion droplet diameter of around 60 μm was achieved at a Laponite concentration of 0.50% by mass when utilizing a PEI/Laponite mass ratio of 0.50. Such emulsions proved to be very stable toward droplet coalescence over time scales of months, although creaming is observed on standing within days due to the relatively large droplet size. These conditions correspond to submonolayer coverage of the Laponite particles by the PEI, which ensures that there is little or no excess PEI remaining in the aqueous continuous phase. This situation is confirmed by visual inspection of the underlying aqueous phase of the creamed emulsion when using fluorescently labeled PEI. These Pickering emulsions are readily converted into novel clay-based colloidosomes via reaction of the primary and/or secondary amine groups on the PEI chains adsorbed at the Laponite surface with either oil-soluble poly(propylene glycol) diglycidyl ether or water-soluble poly(ethylene glycol) diglycidyl ether cross-linkers. These colloidosomes were sufficiently robust to survive the removal of the internal oil phase after washing with excess alcohol, as judged by both optical and fluorescence microscopy. However, dye release studies conducted with clay-based colloidosomes suggest that these microcapsules are highly permeable and hence do not provide an effective barrier for retarding the release of small molecules.  相似文献   

2.
Hydroxy-functionalized polymersomes (or block copolymer vesicles) were prepared via a facile one-pot RAFT aqueous dispersion polymerization protocol and evaluated as Pickering emulsifiers for the stabilization of emulsions of n-dodecane emulsion droplets in water. Linear polymersomes produced polydisperse oil droplets with diameters of ~50 μm regardless of the polymersome concentration in the aqueous phase. Introducing an oil-soluble polymeric diisocyanate cross-linker into the oil phase prior to homogenization led to block copolymer microcapsules, as expected. However, TEM inspection of these microcapsules after an alcohol challenge revealed no evidence for polymersomes, suggesting these delicate nanostructures do not survive the high-shear emulsification process. Thus the emulsion droplets are stabilized by individual diblock copolymer chains, rather than polymersomes. Cross-linked polymersomes (prepared by the addition of ethylene glycol dimethacrylate as a third comonomer) also formed stable n-dodecane-in-water Pickering emulsions, as judged by optical and fluorescence microscopy. However, in this case the droplet diameter varied from 50 to 250 μm depending on the aqueous polymersome concentration. Moreover, diisocyanate cross-linking at the oil/water interface led to the formation of well-defined colloidosomes, as judged by TEM studies. Thus polymersomes can indeed stabilize colloidosomes, provided that they are sufficiently cross-linked to survive emulsification.  相似文献   

3.
Emulsion copolymerization of 2-(tert-butylamino)ethyl methacrylate in the presence of divinylbenzene (DVB) cross-linker and monomethoxy-capped poly(ethylene glycol) methacrylate (PEGMA) macromonomer at 70 °C afforded sterically-stabilized latexes at approximately 10% solids at pH 9. Dynamic light scattering and scanning electron microscopy (SEM) confirmed that relatively narrow size distributions were obtained. SEM confirmed the formation of spherical particles in the absence of any DVB cross-linker using a simple batch protocol, but in the presence of DVB it was necessary to use seeded emulsion polymerization under monomer-starved conditions to prevent the formation of latexes with ill-defined non-spherical morphologies. Lightly cross-linked latexes acquired cationic microgel character upon lowering the solution pH due to protonation of the secondary amine groups. Increasing the degree of cross-linking led to a progressively lower effective pK(a) of the copolymer chains from 8.0 to 7.3, which implies a gradual reduction in their basicity. Poly(tert-butylamino)ethyl methacrylate latex proved to be an effective Pickering emulsifier at pH 10, forming stable oil-in-water emulsions when homogenized with either n-dodecane or sunflower oil at 12?000 rpm for 2 min. These Pickering emulsions exhibited pH-responsive behavior: lowering the solution pH to 3 resulted in immediate demulsification due to the spontaneous desorption of the cationic microgels from the oil/water interface. Following rehomogenization at high pH, four successive demulsification/emulsification pH cycles could be achieved without a discernible loss in performance. However, no demulsification occurred on acidification of the fifth cycle, due to the progressive build-up of background salt.  相似文献   

4.
Sterically stabilized polystyrene latexes (previously described by Amalvy, J. I.; et al. Chem. Commun. 2003, 1826) were evaluated as pH-responsive particulate emulsifiers for the preparation of both oil-in-water and water-in-oil emulsions. The steric stabilizer was a well-defined AB diblock copolymer where A is poly(2-(dimethylamino)ethyl methacrylate) and B is poly(methyl methacrylate). Several parameters were varied during the emulsion preparation, including the polarity of the oil phase, the latex concentration, surface concentration of copolymer stabilizer, and solution pH. Nonpolar oils such as n-dodecane gave oil-in-water emulsions, and polar oils such as 1-undecanol produced water-in-oil emulsions. In both cases, these emulsions proved to be stimulus-responsive: demulsification occurred rapidly on adjusting the solution pH. Oils of intermediate polarity such as methyl myristate or cineole led to emulsions that underwent transitional inversion on adjusting the solution pH. All emulsions were polydisperse and typically ranged from 40 to 400 microm diameter, as judged by optical microscopy and Malvern Mastersizer measurements. Critical point drying of the emulsion droplets, followed by scanning electron microscopy studies, confirmed that the latex particles were adsorbed as a single monolayer at the oil/water interface, as anticipated.  相似文献   

5.
Polystyrene (PS) particles in the size range of 1-7 µm, containing poly(ethylene glycol) or PEG on the particles surface, were prepared by multi-step seeded polymerizations. Micron-sized PS particles were first prepared by dispersion polymerization using 2,2'-azobisisobutyronitrile as initiator and polyvinyl pyrrolidone as stabilizer. Conventional swelling method was then used to increase the size of the PS particles with a large amount of styrene in presence of oil soluble initiator, benzoyl peroxide. In the final step, the PS particles have been used to carry out seeded polymerization with small amount of styrene in presence of poly(ethylene glycol)-azo or PEGA initiator with average molecular weights of the PEG chains of 200 and 3000 g mol-1 , respectively. The average size, size distribution, and surface morphology indicate that seeded polymerization in the final step with small amount of styrene in presence of PEGA is the best way to produce monodisperse polystyrene particles containing PEG near the particles surface.  相似文献   

6.
Emulsion polymerization of 2-vinylpyridine (2VP) in the presence of divinylbenzene (DVB) cross-linker, a cationic surfactant, and a hydrophilic macromonomer, monomethoxy-capped poly(ethylene glycol) methacrylate (PEGMA), at around neutral pH and 60 degrees C afforded near-monodisperse, sterically stabilized latexes at approximately 10% solids. Judicious selection of the synthesis parameters enabled the mean latex diameter to be varied over an unusually wide range for one-shot batch syntheses. Scanning electron microscopy studies confirmed near-monodisperse spherical morphologies, with mean weight-average particle diameters ranging from 370 to 970 nm depending on the initiator, polymeric stabilizer, and surfactant concentrations. Particle sizing studies were also conducted using disk centrifuge photosedimentometry and dynamic light scattering and gave similar data. These lightly cross-linked latexes acquired cationic microgel character at low pH, as expected. The critical pH for this latex-to-microgel transition was around pH 4.1 at 1.0 wt % DVB, which is significantly lower than the pKa of 4.92 estimated for linear P2VP homopolymer by acid titration. 1H NMR and aqueous electrophoresis studies indicated that substantial swelling occurred at low pH due to protonation of the 2VP groups, while dynamic light scattering (DLS) studies indicated volumetric swelling ratios of up to 3 orders of magnitude, depending on the initial latex diameter. Systematic variation of the degree of cross-linking led to a monotonic decrease in the pKa values of the P2VP latexes (as judged by acid titration) and also the critical swelling pH (as judged by visual inspection). This was attributed to the increasingly branched nature of the P2VP chains in their swollen microgel form. Preliminary studies of the kinetics of acid-induced swelling were also conducted using the pH jump method in conjunction with a stopped-flow apparatus. These P2VP latexes swell significantly faster than P2VP latexes described in the literature and the characteristic time scales observed in the present study are much closer to those predicted by the Tanaka equation.  相似文献   

7.
Novel thermoreversible physical hydrogels formed from polymers with linear and star architectures possessing a linear poly(ethyleneimine) (PEI) backbone have been investigated. The hydrogelation occurred simply upon natural cooling of hot aqueous solutions of PEIs to room temperature. The X-ray diffraction and differential scanning calorimetry measurements for the resultant hydrogels unambiguously indicated that the hydrogelation originated from the formation of dihydrate crystalline structures of PEI. These crystalline hydrogels are structurally unique and hierarchical. Microscopic images revealed that the morphologies of the crystalline hydrogels depend on their molecular architectures. The linear PEI resulted in branched fibrous bundles organized by unit crystalline nanofibers with a width of ca. 5-7 nm. The six-armed star with benzene ring core produced fanlike fibrous bundles while the four-armed star with porphyrin core assembled into asterlike aggregates. The critical concentration of gelation (C(G)) was low (about 0.2 approximately 0.3%) and the thermoreversible gel-sol transition temperatures (T(G)) were controllable from approximately 43 to approximately 79 degrees C. The hydrogels formed in the presence of the various aqueous additives including organic solvents, hydrophilic polymers, physical cross-linker, chemical cross-linker, and base enabling modification and functionalization during synthesis. The mechanical properties of the hydrogels could be improved by chemical cross-linking of preformed hydrogels by glutaraldehyde. Physically and physical/chemical cross-linked hydrogels served as excellent template roles in biomimetic silicification, which produced silica-PEI hybrid powder or monolith constructed by nanofibers.  相似文献   

8.
We have developed a method for integrating the self-assembling tobacco mosaic virus capsid into hydrophobic solvents and hydrophobic polymers. The capsid was modified at tyrosine residues to display an array of linear poly(ethylene glycol) chains, allowing it to be transferred into chloroform. In a subsequent step, the capsids could be transferred to a variety of hydrophobic solvents, including benzyl alcohol, o-dichlorobenzene, and diglyme. The thermal stability of the material against denaturation increased from 70 °C in water to at least 160 °C in hydrophobic solvents. With a view toward material fabrication, the polymer-coated TMV rods were also incorporated into solid polystyrene and thermally cast at 110 °C. Overall, this process significantly expands the range of processing conditions for TMV-based materials, with the goal of incorporating these templated nanoscale systems into conductive polymer matrices.  相似文献   

9.
This paper describes the development and optimization of an amperometric biosensor for monitoring ethanol in beverages. The biosensor is constructed by cross-linking a quinoprotein alcohol dehydrogenase (QH-ADH) to an Os-complex-modified poly(vinylimidazole) redox polymer using poly(ethylene glycol) diglycidyl ether. The optimum biosensor configuration was evaluated by changing the ratio between enzyme, redox polymer, and cross-linker using conventional graphite rods as basis electrodes. The optimized sensor showed a sensitivity of 0.336±0.025 A M−1 cm2 for ethanol and a detection limit (calculated as three times the signal-to-noise ratio) of 1 μM.This biosensor configuration was further evaluated in a conventional flow-injection system and the applicability for the determination of ethanol in diverse wine samples could be successfully demonstrated. Adaptation of this sensor configuration to screen-printed (SP) electrodes allowed their integration into an automated sequential-injection analyzer and the successful on-line monitoring of ethanol during wine fermentation processes.  相似文献   

10.
Excess water production in oil and gas wells causes serious productivity and environmental problems in the oilfield. A mixture composed of a polymer, cross-linker, and water is usually injected into the reservoir to block unwanted water by forming a three-dimensional structure. This transition process from solution to gel is a function of temperature, time, salinity of mixing water, and concentration of the various components. The gelling solution was prepared by mixing polyacrylamide (PAM) with distilled water, and then polyethylenimine (PEI) was added as a cross-linker. The injection process was simulated and investigated by differential scanning calorimeter (DSC) over the temperature range of 80–120 °C. The DSC dynamic scan showed two consecutive peaks. An endothermic peak was observed at low temperature due to PAM alkaline hydrolysis which ends at around 60 °C. Another exotherm was observed at ~70 °C which corresponds to the onset of cross-linking of PAM and PEI. It was found that high temperatures lead to high release of heat due to gelation. The effect of salts on the cross-linking was also examined. More delay in cross-linking was observed in the case of NH4Cl compared to NaCl. The gelation kinetics was modeled using a rate process model that relates fractional gelation with time. Further, Avrami model, usually used to study crystallization kinetics, was also used to model the gelation process. Kinetic parameters were obtained from the two different models, and the results showed good agreement with experimental data. The presence of salts in seawater leads to a drop of 60–80 % in the rate constant without influencing the order of the gelation reaction.  相似文献   

11.
A method using safe and mild conditions to prepare water-core colloidosomes of a few micrometers in size is examined. Using poly(styrene-co-butylacrylate) colloidal particles of 180 nm in size, with a low-temperature glass transition of 30 or 42 degrees C, the self-assembly into micrometer-sized water-core polymer shell particles is demonstrated. The effect of oil phase type, surfactant and cosolvent, sintering time, and the method of transfer into an aqueous phase are all examined. The work demonstrates the production of water-core rigid-shell colloidosomes at low temperatures, between 35 and 65 degrees C.  相似文献   

12.
The polymer microspheres were synthesized by dispersion copolymerization of divinylbenzene (DVB) with two vinylbenzyl-terminated poly(ethylene glycol methylether) (PEG)/poly(t-butyl methacrylate) (PBMA) macromonomer blends in methanol. In these systems of two macromonomer blends as the emulsifier, the polymer microspheres formed had a very narrow particle size distribution. Two macromonomers formed comicelles with DVB monomer and acted not only as the comonomer but also as the stabilizer. Such polymer microspheres were stabilized sterically with two-component grafted chains, such as PEG and PBMA, in methanol.  相似文献   

13.
Lead sulfide (PbS) nanoparticles have been synthesized in aqueous solutions by a reaction between inorganic lead salts and sodium sulfide and stabilized using the cationic polyelectrolytes branched poly(ethylenimine) (PEI), poly(allylamine hydrochloride) (PAH), and poly(diallyldimethylammonium chloride) (PDDA). The structures of the polyamine-stabilized nanoparticle dispersions were examined in detail using UV-vis spectroscopy, small-angle X-ray scattering (SAXS), static and dynamic electrophoretic mobility measurements, and transmission electron microscopy (TEM). Considerable differences were found between the stabilizing efficiencies of these polyelectrolytes, which cannot be attributed to their charge densities or their persistence lengths. Small monodisperse nanoparticles of PbS with a tight stabilizing shell were consistently found only when PEI was used as a stabilizer even at high pH values, although its charge density is then very low. The excellence of PEI as a stabilizer is mainly due to the extensive branching of the chains and the presence of uncharged secondary and tertiary amine groups, which apparently serve as good anchoring points at the nanoparticle surfaces. None of the polyelectrolytes examined here provide long-term protection of the nanoparticles toward oxidation by air, showing that a need for more complex multipurpose stabilizers exists for aqueous PbS dispersions.  相似文献   

14.
The novel cross-linker, poly(propylene glycol) block poly(ethylene glycol) block poly(propylene glycol) diamine (PPG/PEG/PPGDA), was employed to chemically cross-link Matrimid 5218 at room temperature. The cross-linking reaction process was monitored by FTIR. The XRD was used to indicate the changing of the polymer structure by cross-linking reaction. The effects of the cross-linking reaction on mechanical performance, gel content and H2, CO2, N2 and CH4 gas transport properties of the cross-linked Matrimid membranes were investigated. The cross-linked Matrimid membranes display excellent CO2 permeability and CO2/light gas selectivity compared with the uncross-linked Matrimid membrane. Finally, the potential application of the cross-linked Matrimid membranes for CO2/light gas separation was explored.  相似文献   

15.
Anion exchange membranes with semi-interpenetrating polymer network (semi-IPN) were prepared based on quaternized chitosan (QCS) and polystyrene (PS). The PS was synthesized by polymerization of styrene monomers in the emulsion of the QCS in an acetic acid aqueous solution under nitrogen atmosphere at elevated temperatures. The semi-IPN system was formed by post-cross-linking of the QCS. A hydroxyl ionic conductivity of 2.80×10(-2) S cm(-1) at 80°C and a tensile stress at break of 20.0 MPa at room temperature were reached, respectively, by the semi-IPN membrane containing 21 wt.% of the PS. The durability of the semi-IPN membrane in alkaline solutions was tested by monitoring the variation of the conductivity and the mechanical strength. The degradation of the conductivity at 80°C was about 5% by immersing the membrane in a 1 mol L(-1) KOH solution at room temperature for 72 h and at 60°C for 50 h, respectively. The tensile stress at break at room temperature could maintain about 20.0 MPa for the membrane soaking in a 10 mol L(-1) KOH solution at ambient temperature for more than 70 h. The water swelling of the semi-IPN membranes was discussed based on the stress relaxation model of polymer chains, and it obeyed the Schott's second-order swelling kinetics.  相似文献   

16.
We present semipermeable, hollow capsules (colloidosomes) that expand and contract upon heating and cooling. The capsules are composed of micrometer-sized poly(N-isopropylacrylamide)-co-acrylic acid microgel particles, which exhibit a reversible size transition near 34 degrees C. The microgel particles assemble on the surfaces of water droplets in oil. Addition of the diblock copolymer poly(butadiene-b-N-methyl 4-vinyl pyridinium iodide) to the oil results in soft, elastic membranes of microgel particles that remain intact after the droplet interfaces are dissolved. Under heating, the capsules contract reversibly by 13% or irreversibly by 40% in radius. These stimulus-responsive colloidosomes might be useful for controlled release or as microscopic actuators.  相似文献   

17.
We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems.  相似文献   

18.
冯明  张改霞  赵晓丽  方莉 《化学通报》2019,82(3):243-250
以羧基化的多壁碳纳米管(MWCNT)为基底,通过酰胺化表面接枝聚乙烯亚胺(PEI)得到MWCNT-PEI复合物功能单体,进而以没食子酸丙酯(PG)为模板分子、乙二醇二缩水甘油醚为交联剂,制备了PG表面分子印迹聚合物,最后采用滴涂法在玻碳电极(GCE)表面构建PG分子印迹电化学传感器。通过循环伏安、电化学阻抗和差分脉冲伏安等手段对所构建传感器的导电性以及PG分子的线性响应、特异识别性、检测稳定性和重复性等进行了测试与表征。结果表明,传感器在PG浓度为1×10~(-8)~1×10~(-5)mol/L的范围内具有良好的线性关系,相关系数为0. 9964,检出限达2. 5×10~(-9)mol/L。此外,该传感器在实际样品中的PG回收率为95%~98%。  相似文献   

19.
The silica/polymer hybrid hollow nanoparticles with channels and gatekeepers were successfully fabricated with a facile strategy by using thermoresponsive complex micelles of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine) (PNIPAM-b-P4VP) as the template. In aqueous solution, the complex micelles (PEG-b-PNIPAM/PNIPAM-b-P4VP) formed with the PNIPAM block as the core and the PEG/P4VP blocks as the mixed shell at 45 °C and pH 4.0. After shell cross-linking by 1,2-bis(2-iodoethoxyl)ethane (BIEE), tetraethylorthosilicate (TEOS) selectively well-deposited on the P4VP block and processed the sol-gel reaction. When the temperature was decreased to 4 °C, the PNIPAM block became swollen and further soluble, and the PEG-b-PNIPAM block copolymer escaped from the hybrid nanoparticles as a result of swelled PNIPAM and weak interaction between PEG and silica at pH 4.0. Therefore, the hybrid hollow silica nanoparticles with inner thermoresponsive PNIPAM as gatekeepers and channels in the silica shell were successfully obtained, which could be used for switchable controlled drug release. In the system, the complex micelles, as a template, could avoid the formation of larger aggregates during the preparation of the hybrid hollow silica nanoparticles. The thermoresponsive core (PNIPAM) could conveniently control the hollow space through the stimuli-responsive phase transition instead of calcination or chemical etching. In the meantime, the channel in the hybrid silica shell could be achieved because of the escape of PEG chains from the hybrid nanoparticles.  相似文献   

20.
This work describes the formation of water-soluble hydrophilic nanoparticles from biosynthetic poly-γ-glutamic acid (PGA). Nanoparticles were formed by cross-linking using 2,2′-(ethylenedioxy) diethylamine in the presence of water-soluble carbodiimide. The structure was determined by nuclear magnetic resonance spectroscopy and the particle size by transmission electron microscopy (TEM), size exclusion chromatography (SEC), and dynamic light-scattering (DLS) measurements. The results from TEM, SEC, and DLS reveal that the particle size depends on the ratio of cross-linking. Particle size values measured by TEM were between 20 and 90 nm. Formation of cross-linked nanoparticles results in a dramatic viscosity drop compared to the viscosity of the corresponding solution of the parent PGA. The viscosity and DLS experiments disclose an intriguing interplay between intrachain and interchain cross-linking of the polymer chains, depending on the cross-linker density and polymer concentration. The SEC measurements show that the retention time of the major portion of particles increase because of the higher cross-linking ratio. At moderate cross-linker concentration, intramolecular cross-linking is the dominant process, whereas at higher cross-linker densities, the interpolymer cross-linking plays an important role. As a result, large clusters are also formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号