首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is presented for the deconvolution of the NMR spectrum of a chemical mixture without requiring physical separation of its components. The method, which is termed "Demix", is based on a principal component analysis of a series of one-dimensional (1D) spectra that are statistically modulated during preparation and TOCSY mixing periods. The largest principal components correspond to the 1D NMR spectra of the scalar J-coupled spin networks of the individual components of the mixture. The method is demonstrated for aqueous mixtures of the amino acids Glu, Leu, Lys, and Val.  相似文献   

2.
Residual water suppression by indirect covariance NMR   总被引:1,自引:0,他引:1  
Residual water solvent signals in 2D NMR experiments adversely affect appearance and subsequent analysis of spectra. A method for water suppression that is based on indirect covariance processing is described. It produces a symmetric spectrum with a water signal that is substantially decreased or completely absent. The method, which can be combined with other water suppression schemes, is demonstrated for 2D TOCSY, NOESY, and ROESY spectra of the protein, ubiquitin in aqueous solution.  相似文献   

3.
4.
5.
Mixture analysis by high resolution diffusion-ordered NMR spectroscopy (HR-DOSY) requires differences in both chemical shift and diffusion coefficient; resolution can be greatly enhanced by exploiting the chemical specificity of lanthanide shift reagent binding to increase chemical shift and diffusion dispersion simultaneously.  相似文献   

6.
By using low temperatures and largely deuterated solvents, the rate of OH proton exchange for aqueous solutions of alcohols is reduced sufficiently to give separate NMR signals from water and alcohol OH protons. The limiting shifts for dilute alcohols in water are down-field of both the water resonance and those of the pure alcohols. This contrasts with the limiting shift for water in the alcohols, which is to high field of the bulk water resonance. The resonance shifts initially to low fields as [ROH] increases, the rate of shift being greatest for t-butyl alcohol. For dilute aqueous solutions, all the alcohols reduce the total concentration of free OH groups, as judged by the overtone infrared spectra. Some of these results are interpreted in terms of a scavenging of free OH groups by the excess lone-pairs of the alcohol molecules. An extra, temperature dependent, down-field shift in the water proton resonance induced by t-butyl alcohol is assigned to a clathrate cage effect.  相似文献   

7.
The radical addition reactions of organobromine compounds, XBr (X = CH2COOMe, PhCH2, CHBr2 and CCl3) with cyclohexene afforded mixtures of cis/trans isomer pairs of 1-X-2-Br-cyclohexanes. In addition to benzyl benzoyloxy derivatives are formed also, when benzoyl peroxide is used as an initiator. Owing to the great difficulties in separating these cis/trans isomer pairs, they are identified directly in their mixtures by NMR spectroscopy. In addition to one-dimensional (ID) 1H, proton decoupled 13C and DEPT-135, also two-dimensional (2D) 13C-13C INADEQUATE as well as 1H-13C HMQC experiments have been used in assigning the signals of each compound in their mixtures. The identification of each isomer was based on comparison of experimental 3J(H,H) coupling constants with theoretical ones based on the well-known Karplus type relationship. The more stable conformation for each isomer was estimated using the semiempirical AM1 molecular orbital method. The calculations support the isomer pair elucidations.  相似文献   

8.
9.
Indirect covariance NMR offers an alternative method of extracting spin-spin connectivity information via the conversion of an indirect-detection heteronuclear shift-correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)-HSQC-TOCSY spectrum as a starting point for the indirect covariance processing, a spectrum that can be described as a carbon-carbon COSY experiment is obtained. These data are analogous to the autocorrelated 13C-13C double quantum INADEQUATE experiment except that the indirect covariance NMR spectrum establishes carbon-carbon connectivities only between contiguous protonated carbons. Cyclopentafuranone and the complex polynuclear heteroaromatic naphtho[2',1':5,6]-naphtho[2',1':4,5]thieno[2,3-c]quinoline are used as model compounds. The former is a straightforward example because of its well-resolved proton spectrum, while the latter, which has considerable resonance overlap in its congested proton spectrum, gives rise to two types of artifact responses that must be considered when using the indirect covariance NMR method.  相似文献   

10.
Weak molecular interactions such as those in pyridine—iodine, benzene—iodine and benzene—chloroform systems oriented in thermotropic liquid crystals have been studied from the changes of the order parameters as a result of complex formation. The results indicate the formation of at least two types of charge transfer complexes in pyridine—iodine solutions. The pi-complexes in benzene—chloroform and benzene—iodine mixtures have also been detected. No detectable changes in the inter-proton distances in these systems were observed.  相似文献   

11.
Post-translational protein modifications (PTMs) such as phosphorylation and acetylation regulate a large number of eukaryotic signaling processes. In most instances, it is the combination of different PTMs that "encode" the biological outcome of these covalent amendments in a highly dynamic and cell-state-specific manner. Most research tools fail to detect different PTMs in a single experiment and are unable to directly observe dynamic PTM states in complex environments such as cell extracts or intact cells. Here we describe in situ observations of phosphorylation and acetylation reactions by high-resolution liquid-state NMR spectroscopy. We delineate the NMR characteristics of progressive lysine acetylation and provide in vitro examples of joint phosphorylation and acetylation events and how they can be deciphered on a residue-specific basis and in a time-resolved and quantitative manner. Finally, we extend our NMR investigations to cellular phosphorylation and acetylation events in human cell extracts and demonstrate the unique ability of NMR spectroscopy to simultaneously report the establishment of these PTMs by endogenous cellular enzymes.  相似文献   

12.
Indirect and unsymmetrical indirect covariance NMR provide powerful tools to compute and visualize correlation information by transforming component spectra into combined spectral data matrices. Sensitive component spectra such as TOCSY, HSQC and NOESY can be quickly converted into experimentally insensitive or time-consuming correlation spectra such as HSQC-NOESY. The comparison of illustrative series of spectra from four steroids, dexamethasone, testosterone, allylestrenol and tibolone, renders the effects of resonance overlap on the ease of interpretation visible. The compounds are selected such that signal overlap increases systematically in the proton and carbon domain. Spectra are defined as light, moderate and heavy signal overlap, based on signal density. The investigation suggests that moderate spectral congestion in either proton or carbon domain leads to a number of artifacts that does not hamper signal assignment but lowers the level of confidence on de novo structure elucidation. Since the number of correlations usually increases through covariance processing, component spectra with severe spectral congestion in both dimensions are not suitable for covariance processing and the resulting spectra do not support structure confirmation or structure elucidation. The calculated spectra are compared with the corresponding experimental spectra with respect to their application in structure elucidation laboratory environments.  相似文献   

13.
Using model high-viscosity single-component and mixed systems based on biopolymers with different molecular sizes (poly(ethylene glycol), dextran, and polysucrose) as examples, it is shown by photon-correlation spectroscopy combined with monoand polymodal analysis that solvent viscosity should be used, when calculating the hydrodynamic diameter of molecules in single-component aqueous solutions and mixed solutions of dextran and polysucrose, which have close molecule sizes, by the Stokes–Einstein equation. For mixtures of dextran and polysucrose with polyethylene glycol, the viscosity of the medium, the role of which is played by the poly(ethylene glycol) solution, should be used.  相似文献   

14.
Rinaldi PL 《The Analyst》2004,129(8):687-699
This paper reviews the non-biological applications of three dimensional NMR (3D-NMR) spectroscopy methodologies for studying chemical structures in polymer science, dendrimer research, organometallic chemistry, organosilicon chemistry, and mixtures of small organic molecules. Four methodologies for solving chemical structure problems are described, where the appropriate method is determined by the presence or absence of a third X nucleus (in addition to (1)H and (13)C) with suitable NMR properties.  相似文献   

15.
An approach enabling the acquisition of 2D nuclear magnetic resonance (NMR) spectra within a single scan has been recently proposed. A promising application opened up by this "ultrafast" data acquisition format concerns the monitoring of chemical transformations as they happen, in real time. The present paper illustrates some of this potential with two examples: (i) following an H/D exchange process that occurs upon dissolving a protonated protein in D2O, and (ii) real-time in situ tracking of a transient Meisenheimer complex that forms upon rapidly mixing two organic reactants inside the NMR observation tube. The first of these measurements involved acquiring a train of 2D 1H-15N HSQC NMR spectra separated by ca. 4 s; following an initial dead time, this allowed us to monitor the kinetics of hydrogen exchange in ubiquitin at a site-resolved level. The second approach enabled us to observe, within ca. 2 s after the triggering of the reaction, a competition between thermodynamic and kinetic controls via changes in a series of 2D TOCSY patterns. The real-time dynamic experiments hereby introduced thus add to an increasing family of fast characterization techniques based on 2D NMR; their potential and limitations are briefly discussed.  相似文献   

16.
It was recently demonstrated that an IDR- (Inverted Direct Response) HSQC-TOCSY data set could be decomposed into a negatively phased direct response spectrum and a positively phased relayed response spectrum that could then be subjected to unsymmetrical indirect covariance processing for the removal of artifacts due to response overlap in the proton NMR spectrum of the molecule. Using experimentally discrete HSQC and HMBC data sets, it is shown that unsymmetrical indirect covariance processing of the pair of NMR spectra affords a presentation containing long-range carbon-carbon connectivity information. The method is demonstrated using strychnine as a model compound. The resulting data are largely free of artifacts although artifacts can arise due to proton response overlap, as previously reported.  相似文献   

17.
We present a new method for determining the orientation of chemical shift tensors in polycrystalline solids with site resolution and demonstrate its application to the determination of the Calpha chemical shift tensor orientation in a model peptide with beta-sheet torsion angles. The tensor orientation is obtained under magic angle spinning by modulating a recoupled chemical shift anisotropy (CSA) pattern with various dipolar couplings. These dipolar-modulated chemical shift patterns constitute the indirect dimension of a 2D spectrum and are resolved according to the isotropic chemical shifts of different sites in the direct dimension. These dipolar-modulated CSA spectra are equivalent to the projection of a 2D static separated-local-field spectrum onto its chemical shift dimension, except that its dipolar dimension is multiplied with a modulation function. Both (13)C-(1)H and (13)C-(15)N dipolar couplings can modulate the CSA spectra of the Calpha site in an amino acid and yield the relative orientations of the chemical shift principal axes to the C-H and C-N bonds. We demonstrate the C-H and C-N modulated CSA experiments on methylmalonic acid and N-tBoc-glycine, respectively. The MAS results agree well with the results of the 2D separated-local-field spectra, thus confirming the validity of this MAS dipolar-modulation approach. Using this technique, we measured the Val Calpha tensor orientation in N-acetylvaline, which has beta-sheet torsion angles. The sigma(11) axis is oriented at 158 degrees (or 22 degrees) from the C-H bond, while the sigma(22) axis is tilted by 144 degrees (or 36 degrees) from the C-N bond. Both the orientations and the magnitude of this chemical shift tensor are in excellent agreement with quantum chemical calculations.  相似文献   

18.
Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state (2)H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed (2)H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol.  相似文献   

19.
ClPbis11BB and Pbis11BB, two banana-shaped mesogens differing by a chlorine substituent on the central phenyl ring, show a nematic and a B2 phase, respectively. To obtain information on the structural features responsible for their different mesomorphic behavior, a study of the preferred conformations of these mesogens has been performed by NMR spectroscopy in two nematic media (Phase IV and ZLI1167), which should mimic the environment of the molecules in their own mesophases, avoiding problems of sample alignment by a magnetic field. To this aim, 2H NMR experiments have been performed on selectively deuterated isotopomers of ClPbis11BB and Pbis11BB and of two parent molecules, ClPbisB and PbisB, assumed as models in previous theoretical and experimental conformational studies. We found that only a limited number of conformations is compatible with experimental data, often very different from those inferred from theoretical calculations in vacuo, indicating a strong influence of the liquid crystalline environment on molecular conformation. No significant differences between chlorinated and non-chlorinated molecules were found, this suggesting that chlorine does not change the molecular conformational equilibrium, as previously proposed.  相似文献   

20.
We have recently demonstrated that unsymmetrical indirect covariance NMR methods can be used to mathematically calculate the equivalent of low sensitivity, hyphenated NMR experiments by combining data from a pair of higher sensitivity experiments. The present report demonstrates the application of this method to the combination of HSQC and NOESY spectra to provide results comparable to HSQC-NOESY data, albeit with greater sensitivity and with considerably less spectrometer time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号