首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nitrido-encapsulated heterometallic cluster anions [Co(10)Rh(N)2(CO)21](3-) (1), [Co(10)Rh2(N)2(CO)24](2-) (2), and [Co(11)Rh(N)2(CO)24](2-) (3) have been obtained by tailored redox-condensation reactions. These three anions are rare high-nuclearity mixed-metal clusters containing two interstitial nitrogen atoms. Their structures have been determined by single-crystal X-ray diffraction on their [NR4]+ salts (R = Me for 1 and 3, R = Et for 2), and their electrochemical and ESR properties have been studied in detail. It is noteworthy that 1 has an unprecedented stereochemistry that does not exhibit a close geometrical resemblance with the isoelectronic homometallic anion [Co(11)N2(CO)11(mu2-CO)10](3-), and 2, despite its even number of electrons, is a paramagnetic species.  相似文献   

2.
The reagent [arachno-4-CB8H14] reacts with [Fe3(CO)12] in tetrahydrofuran (THF) at reflux temperatures, followed by addition of [N(PPh3)2]Cl, to afford [N(PPh3)2][4,9-{Fe(CO)4}-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (3). In the anion of 3, one iron atom is part of the open CBBFeBB face of a 10-vertex {arachno-9,6-FeCB8} cage, to which the second iron atom is attached via an Fe-Fe bond and an additional exo-polyhedral Fe-B sigma bond. Upon heating 3 in refluxing toluene, the closed 10-vertex species [N(PPh3)2][2,2,2-(CO)3-closo-2,1-FeCB8H9] (4) is obtained, whereas the isomeric compound [N(PPh3)2][6,6,6-(CO)3-closo-6,1-FeCB8H9] (5) is isolated upon heating [closo-4-CB8H9]- and [Fe3(CO)12] in refluxing THF with subsequent addition of [N(PPh3)2]Cl. Protonation of 3 using CF3SO3H in CH2Cl2 gives the charge-compensated compound [4,9-{Fe(CO)4}-4-(mu-H)-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (6), in which the B-Fe sigma bond of the precursor has been converted to a B-H right harpoon-up Fe linkage. In contrast, 3 with {M(PPh3)}+ gives the trimetallic species [1,3,4,9-{MFe(CO)4(PPh3)}-1,3-(mu-H)2-9,9,9-(CO)3-arachno-9,6-FeCB8H9] (M = Cu (7), Ag 8) in which the three metal centers form a V-shaped M-Fe-Fe unit. Compound 6 reacts with PEt3 in the presence of Me(3)NO to yield [4,9-(PEt3)2-9,9-(CO)2-nido-9,6-FeCB8H10] (9). In the latter, the formerly exo-polyhedral {Fe(CO)4} fragment has been replaced by a PEt3 ligand, with a second PEt3 substituting one CO group at the remaining cluster iron vertex. The novel structural features of compounds 3-9 have been confirmed by single-crystal X-ray diffraction studies.  相似文献   

3.
The electrochemical oxidations of (C6H6)Cr(CO)3, 1, and (C5H5)Co(CO)2, 2, when carried out in CH2Cl2/[NBu4][B(C6F5)4], allow the physical or chemical characterization of the 17-electron cations 1+ and 2+ at room temperature. The generation of 1+ on a synthetic time scale permits an electrochemical "switch" process involving facile substitution of CO by PPh3 as a route to (C6H6)Cr(CO)2PPh3. The radical 2+ undergoes a second-order reaction to give a product assigned as the metal-metal bonded dimer dication [Cp2Co2(CO)4]2+. The new anodic chemistry of these often-studied 18-electron compounds is made possible by increases in the solubility and thermal stability of the cation radicals in media containing the poorly nucleophilic anion [B(C6F5)4]-, TFAB.  相似文献   

4.
The homoleptic complexes [Ph(4)P](2)[Co[N(CN)(2)](4)] and [Ph(4)P][M[N(CN)(2)](3)] [M = Co, Mn] have been structurally as well as magnetically characterized. The complexes containing [M[N(CN)(2)](4)](2-) form 1-D chains, which are bridged via a common dicyanamide ligand in [M[N(CN)(2)](3)](-) to form a 2-D structure. The five-atom [NCNCN](-) bridging ligands lead to weak magnetic coupling along a chain. The six [NCNCN](-) ligands lead to a (4)T(1g) ground state for Co(II) which has an unquenched spin-orbit coupling that is reflected in the magnetic properties. Long-range magnetic ordering was not observed in any of these materials.  相似文献   

5.
Treatment of P(X)(X')Cl with KC8 gave the crystalline diphosphine [P(X)X']2 (1) which dissociated reversibly into the phosphinyl radical *P(X)X' (2), a plausible intermediate in the reaction of with [Cr(CO)6], [Co(NO)(CO)3] or P4, yielding [Cr[P(X)X']2(CO)3] (3), [Co[P(X)X'](CO)3] (4), or 1,4-P4[P(X)X']2 (5); the P(X)X' substituent is pyramidal at P in but planar in [X = N(SiMe3)2, X'= NPri2].  相似文献   

6.
A new organic-inorganic hybrid polyoxometalate based on Dawson-like polyoxotungstate anion [SbW18O60]9-, formulated [Co(2,2'-bpy)3]2[Co(2,2'-bpy)2Cl][Co(2,2'-bpy)2]H2[SbW18O60]·4H2O (2,2'-bpy= 2,2(-bipyridine) has been synthesized from Sb2O3, Na2WO4, CoCl2, and 2,2'-bipyridine materials by hydrothermal method, and which was characterized by elemental analyses, IR, XPS, EPR, TG, and X-ray single crystal diffraction. Structure analysis shows that the polyoxoanion self-assembled under hydrothermal conditions consists of a Dawson-like polyoxotungstate cluster anion [SbW18O60]9- encapsulating a pyramidal {SbO3} group within the {W18} cluster cage. EPR spectra show that the high-spin octahedral CoⅡ and low-spin CoⅡ ions coexist in the title compound. Magnetic properties indicate that the compound is antiferromagnetic.  相似文献   

7.
The novel cluster anion [Co(11)Te(5)(CO)15]- ([3]-) has been isolated and structurally characterized as part of the salt [Cp*(2)Nb(CO)2][3] (Cp* = C(5)Me(5)). The cobalt-centered Co10 pentagonal prism is surrounded by a shell of two mu5-Te, three mu4-Te ligands, and 15 CO groups in terminal, symmetrical, and sigma-semibridging bonding modes. The hybrid carbonyl-telluride character of the ligand shell is reflected in the solid state by a one-dimensional assembly of polyhedral prisms along a backbone of [Cp*(2)Nb(CO)2]+ cations. Electrochemical studies reveal the presence of four redox couples of [3]n (n = -1 to -5). The electronic structures of various metal-centered and empty pentagonal-prismatic (PP) M10 clusters (M = Co, Ni) are calculated and compared to those of pentagonal-antiprismatic (PA) M10 structures. Closed-shells of 152 and 156 metal valence electrons, respectively, are found to determine the electronic structures and chemical properties of these geometries. From these considerations, magnetic properties have been predicted. They have been verified for the [Co(11)Te(7)(CO)10]- cluster anion, which exhibits a singlet-triplet gap of 0.318 kcal/mol.  相似文献   

8.
Novel N,N'-bisethoxyethane[12]amideferrocenophane has been synthesized by a condensation reaction and characterized by (1)H NMR and mass spectrum. The anion recognition properties of the compound are evaluated via (1)H NMR, FT-IR, and electrochemical measurement. It is found that N,N'-bisethoxyethane[12]amideferrocenophane exhibits remarkable electrochemical response to H(2)PO(4-) anion in CH(2)C(l2) or CH(3)CN solution, and response to anions can also be observed in CH(3)CN solution containing up to 15% water. Binding constants between the compound and HSO(4-) in different solutions have been determined by UV-vis spectrum titration experiments. The results indicate that the compound shows a selective recognition trend of H(2)PO(4-) > HSO(4-) (F(-)) > Br(-).  相似文献   

9.
Reduction of Na[Ir(CO)4] by sodium metal in (Me2N)3PO, followed by treatment with liquid ammonia, provided high yields (ca. 90%) of unsolvated Na3[Ir(CO)3], a thermally stable, pyrophoric orange solid. This substance contains iridium in its lowest known formal oxidation state of -3 and has been characterized by IR spectroscopy, elemental analyses, and derivative chemistry, i.e., by its conversion to the triphenylgermyl and triphenylstannyl complexes, trans-[Ir(CO)3(EPh3)2](-), E = Ge, Sn. Single-crystal X-ray structures of the tetraethylammonium salts of these species, as well as [Co(CO)3(SnPh3)2](-), confirm the trigonal bipyramidal nature of the anions, originally predicted on the basis of their IR spectra in the carbonyl stretching frequency region. These structural characterizations provide important additional evidence for the presence of metal tricarbonyl units in Na3[M(CO)3], M = Co, Ir.  相似文献   

10.
1 INTRODUCTION The chalcogenidometallates with open frame- works have attracted considerable interest as pos- sible zeolite-like materials, of which highly interes- ting properties could be expected. Over the last de- cades a large number of thioanti…  相似文献   

11.
The rhenacarborane salt Cs[Re(CO)3(eta5-7,8-C2B9H11)] (1) has been used to synthesize the tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Ph2P(CH2)2PPh2]] (3) where two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments have been shown by X-ray crystallography to be bridged by a single 1,2-bis(diphenylphosphino)ethane ligand. Reaction of 1 with Ag[BF4] in the presence of the ligands bis- or tris(pyrazol-1-yl)methane yields the complexes [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-CH2(C3H3N2-1)2]] (4) or [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-kappa1,kappa2-CH(C3H3N2-1)3]] (5), respectively. From X-ray studies, the former comprises a Re-Ag bond bridged by the carborane cage and with the bis(pyrazol-1-yl)methane coordinating the silver(I) center in an asymmetric kappa(2) mode. Complex 5 was unexpectedly found to contain a tris(pyrazol-1-yl)methane bridging two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments in a kappa1,kappa2 manner. Treatment of 1 with Ag[BF4] in the presence of 2,2'-dipyridyl and 2,2':6',2' '-terpyridyl yields [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-(C5H4N-2)(2)]] (6) and [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa3-C5H3N(C5H4N-2)2-2,6]] (7). The X-ray structure determination of 7 revealed an unusual pentacoordinated silver(I) center, asymmetrically ligated by a kappa3-2,2':6',2' '-terpyridyl molecule. The same synthetic procedure using N,N,N',N'-tetramethylethylenediamine gave a tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Me2N(CH2)2NMe2]2] (8) which is believed, in the solid state, to be bridged between the silver atoms by two of the diamine molecules. The salt 1 with Ag[BF4] in the absence of any added ligand gave the tetrameric cluster [ReAg[mu-5,6,10-(H)3-eta5-7,8-C2B9H8](CO)3]4 (9) where, in the solid state, four [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] units are held together by long interunit B-H right harpoon-up Ag bonds.  相似文献   

12.
The reaction of the cluster salts [Cp(2*) Nb(CO)(2)](n)[Co(11)Te(7)(CO)(10)] (Cp*=C(5)Me(5); n=1, 2) with excess PMe(2)Ph gave the neutral, dark brown clusters [Co(11)Te(7)(CO)(6)(PMe(2)Ph)(4)] (5) and [Co(11)Te(7)(CO)(5)(PMe(2)Ph)(5)] (6) with 147 metal valence electrons. The new compounds were characterized by IR spectroscopy, elemental analyses, and mass spectrometry. The molecular structure of 6 was determined by X-ray crystallography. Like its precursor anion, it consists of a pentagonal-prismatic [Co(11)Te(7)] core, but with a ligand sphere composed of five CO and five PMe(2)Ph ligands. Detailed electrochemical studies of both reactions reveal that a stepwise substitution of CO ligands in the initial cluster anions takes place leading to intermediate [Co(11)Te(7)(CO)(10-m)(PMe(2)Ph)(m)](n-) ions (m=1-5; n=1, 2). Each of these intermediates is distinguished by at least one oxidation and two reduction waves, giving rise to a total of 21 redox couples and 27 electroactive species. The electron sponge character of the new compounds is particularly pronounced in 5, which exhibits charges n between +1 and -4 corresponding to metal valence electron counts of between 146 and 151.  相似文献   

13.
An ambient temperature liquid transition metal carbonyl anion has been prepared in a metathesis reaction between [bmim]Cl ([bmim]+ = 1-butyl-3-methylimidazolium cation) and Na[Co(CO)4]; the ionic liquid catalyses the debromination of 2-bromoketones.  相似文献   

14.
The reactions of appropriate ratios of K2TeO3 and [Mn2(CO)10)] in superheated methanol solutions lead to a series of novel cluster anions [Te4Mn3(CO)10] (1), [Te2Mn3(CO)9]2- (2), [Te2Mn3(CO)9]- (3), and [Te2Mn4(CO)12]2- (4). When cluster 1 is treated with [Mn2(CO)10]/KOH in methanol, paramagnetic cluster 2 is formed in moderate yield. Cluster 2 is oxidized by [Cu(MeCN)4]BF4 to give the closo-cluster [Te2Mn3(CO)9]- (3), while treatment of 2 with [Mn2(CO)10]/KOH affords the closo-cluster 4. IR spectroscopy showed that cluster 1 reacted with [Mn2(CO)10] to give cluster 4 via cluster 2. Clusters 1-4 were structurally characterized by spectroscopic methods or/and X-ray analyses. The core structure of 1 can be described as two [Mn(CO)3] groups doubly bridged by two Te2 fragments in a mu2-eta2 fashion. Both [Mn(CO)3] groups are further coordinated to one [Mn(CO)4] moiety. Cluster 2 is a 49 e- species with a square-pyramidal core geometry. While cluster 3 displays a trigonal-bipyramidal metal core, cluster 4 possesses an octahedral core geometry.  相似文献   

15.
The new complexes [Et4N]2 [Mo(CO)4(SR)2] (R = Ph, Bz) have been prepared by reaction of [Et4N] [SR] with (norbornadiene)Mo(CO)4 at low temperature. The IR spectra and electrochemical behavior of these two species are different, perhaps implicating different conformational isomers with respect to the thiolate ligands. These complexes may prove to be valuable reagents for the synthesis of new heterometallic compounds, by virtue of their cis-monodentate thiolate ligands.  相似文献   

16.
The recently proposed (SO2)2N3- anion was structurally characterized by single-crystal X-ray diffraction of the [Cs][(SO2)2N3] salt (P2(1)/c, a = 8.945(2) A, b = 10.454(2) A, c = 8.152(2) A, beta = 109.166(3) degrees, Z = 4, and R1 = 0.0329 at 130 K). In the (SO2)2N3- anion, both SO2 ligands are coordinated to one terminal nitrogen atom of the N3- anion.  相似文献   

17.
A series of crystalline salts based on the [M(dto)2]2- (dto = 1,2-dithiooxalate, M = Ni, Pt, Cu) dianion with hydrogen-bond donor cations have been synthesised following a molecular tectonics approach. The chelating M(dto)[dot dot dot]HN supramolecular synthon has been exploited in a systematic study of its robustness. The effects of competition between hydrogen-bond acceptors, of the shape and functionality of the cations and of varying the metal in the anion are discussed. The preparation and structural characterisation of the new crystalline phases [4,4'-H(2)bipy][Pt(dto)2] (2), [HNC5H4CO2H-4]2[Pt(dto)2] (5), [HNC5H4CO2H-3]2[Pt(dto)2] (6), [HNC5H4CH2CO2H-4]2[Ni(dto)2] (7), [HNC(5)H(4)CH(2)CO(2)H-3]2[Ni(dto)2] (8), [HNC5H4CONH2-4]2[Ni(dto)2] (9), [HNC5H4CHNOH-4]2[Ni(dto)2] (10), [HNC5H4CHNOH-3]2[Ni(dto)2] (11), [4,4'-H2bipip][Ni(dto)2] (12), [H2NC5H9CO2H-4]2[Pt(dto)2] (12), [H2NC5H9CO2H-4]2[Cu(dto)2] (14), [H2NC5H9CO2H-3]2[Ni(dto)2][H2O]2 (15), [H2NC5H9CO2H-3]2[Pt(dto)2][H2O]2 (16), [H2NC5H9CO2H-3]2[Cu(dto)2][H2O]2 (17), [H(Me)NC5H9CO2H-4]2[Ni(dto)2][H2O]2 (18) is reported. The charge-assisted NH[dot dot dot]dto synthon is formed in each of compounds 1-20, and is apparently much more robust than the conventional synthons used (such as the carboxylic acid dimer), which have a much lower rate of occurrence. The NH[dot dot dot]dto synthon may be generalised to 3- and 4-pyridinium species and 3- and 4-piperidinium derivatives. In the latter cases branching of the hydrogen-bond networks through the NH2 groups arises. The robustness of the NH...dto synthon allows structures of the form [NH cation]2[M(dto)2] to be regarded as being formed by the packing of neutral supermolecules. Cases of isomorphism (as in 16-18) and latent polymorphism (e.g. in 4 and 6) are noted.  相似文献   

18.
The reaction of [Co(2)(CO)(8)] with (CF(3))(3)BCO in hexane leads to the Lewis acid-base adduct [Co(2)(CO)(7)CO--B(CF(3))(3)] in high yield. When the reaction is performed in anhydrous HF solution [Co(CO)(5)][(CF(3))(3)BF] is isolated. The product contains the first example of a homoleptic metal pentacarbonyl cation with 18 valence electrons and a trigonal-bipyramidal structure. Treatment of [Co(2)(CO)(8)] or [Co(CO)(3)NO] with NO(+) salts of weakly coordinating anions results in mixed crystals containing the [Co(CO)(5)](+)/[Co(CO)(2)(NO)(2)](+) ions or pure novel [Co(CO)(2)(NO)(2)](+) salts, respectively. This is a promising route to other new metal carbonyl nitrosyl cations or even homoleptic metal nitrosyl cations. All compounds were characterized by vibrational spectroscopy and by single-crystal X-ray diffraction.  相似文献   

19.
Two types of Ln(II)-Co(4) isocarbonyl polymeric arrays, [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3; x = 0, 1) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4), were prepared and structurally characterized. Transmetalation involving Ln(0) and Hg[Co(CO)(4)](2) in Et(2)O yields [(Et(2)O)(3)Ln[Co(4)(CO)(11)]]( infinity ) (1, Ln = Yb; 2, Ln = Eu). Dissolution of the solvent-separated ion pairs [Ln(THF)(x)()][Co(CO)(4)](2) (Ln = Yb, x = 6; Ln = Eu) in Et(2)O affords [(Et(2)O)(2)(THF)Yb[Co(4)(CO)(11)]]( infinity ) (3) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4). In these reactions, oxidation and condensation of the [Co(CO)(4)](-) anions result in formation of the new tetrahedral cluster [Co(4)(CO)(11)](2)(-). The two types of Ln(II)-Co(4) compounds contain different isomers of [Co(4)(CO)(11)](2)(-), and, consequently, the structures of the infinite isocarbonyl networks are distinct. The cluster in [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3) possesses pseudo C(3)(v)() symmetry (an apical Co, three basal Co atoms; one face-bridging, three edge-bridging, seven terminal carbonyls) and connects to Ln(II) centers through eta(2),micro(4)- and eta(2),micro(3)-carbonyls to generate a 2-D puckered sheet. In contrast, [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4) incorporates a C(2)(v)() symmetric cluster (two unique Co environments; two face-bridging, one edge-bridging, eight terminal carbonyls), and isocarbonyl linkages (eta(2),micro(4)-carbonyls) to Eu(II) atoms create a 1-D zigzag chain. Complexes 1-4 contain the first reported eta(2),micro(4)-CO bridges between a Ln and a transition-metal carbonyl cluster. Infrared spectroscopic studies revealed that the isocarbonyl associations to Ln(II) persist in solution. The solution structure and dynamic behavior of the [Co(4)(CO)(11)](2)(-) cluster in 1 was investigated by variable-temperature (59)Co and (13)C NMR spectroscopies.  相似文献   

20.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号