首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diameters of the ordinary hard bubbles (OHBs) and soft bubbles in epitaxial garnet films are measured under the microscope at various temperatures. It is found that the bubble diameters of OHBs increase with temperature, and it is concluded that the equilibrium separation between two neighbouring vertical Bloch lines (VBLs) Seq is widened with increasing temperature. At the same time, the results can be understood simply as that there are more VBLs in the domain walls of the first dumbbell domains (IDs) than those in walls of OHBs at the same temperature.  相似文献   

2.
3.
The influence of shearing on the magnetic properties and domain structure of 0.5 mm thick non-oriented electrical steel was studied. In the region from 1 to 1.4 mm from the sheared edge, a striped domain pattern that indicated the existence of elastic strain was observed. From the degradation tendency of flux density with respect to shearing width, the width of the degraded region near the edge increased as the magnetic field decreased. These results suggested that the change in the flux density at high magnetic fields over 300 A/m were mainly dependent on the characteristics of the edge vicinity where the domain pattern was influenced by shearing.  相似文献   

4.
In ultrathin films, due to the thermal activation and temperature dependencies of the magnetic parameters, magnetization reversal processes are strongly affected by thermal effects. We analyze changes of domain periods of ultrathin cobalt and L10L10 films in a wide temperature range. With regard to the temperature dependencies of the film magnetic parameters we calculate the equilibrium stripe period as a function of temperature. It is shown that on film heating the equilibrium domain structure (DS) period decreases and at the reorientation phase transition (RPT) approaches its minimal value corresponding to the temperature independent period of the sinusoidal domain structure. Just below the RPT temperature (or thickness) the stripe domain period was found to exponentially decrease with temperature. Irreversible temperature changes of the domain period affected by coercivity are also discussed.  相似文献   

5.
Arrays of elliptical particles with aspect ratio 1:3 and short axes 50, 100 and 150 nm were prepared by electron-beam lithography and ion-beam milling of epitaxial (0 0 1)Fe films of thicknesses 10 and 20 nm. The domain state of an individual particle imaged by magnetic force microscopy in zero field after demagnetization was observed to change from being bi-domain or multidomain (MD) to stable single domains (SD) as the lateral size and film thickness were decreased. The critical size for SD formation was found to be close to the actual lateral sizes of 100 nm×300 nm and 150 nm×450 nm for the thicknesses of 20 and 10 nm, respectively. Only in the 10 nm thick ellipses of lateral size 100 nm×300 nm, the magnetization reversal may take place through coherent rotation. For all other investigated samples, the experimental switching field is lower than what would be required for this process.  相似文献   

6.
FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO2/Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 °C.  相似文献   

7.
FePt multilayer composite films with and without B4C interlayer have been prepared by magnetron sputtering, respectively, and subsequent annealing in vacuum. It was found that the B4C layers effectively serve as spacers to separate the FePt layers, enhancing (0 0 1) orientation of FePt alloy. Our results show that highly (0 0 1) oriented FePt/B4C films have significant potential as perpendicular recording media.  相似文献   

8.
It is shown that magnetic X-ray circular dichroism (MXCD) can be exploited in photoemission electron microscopy not only to visualize the domain structure of ferromagnets, but also to perform quantitative measurements of the stray magnetic fields at the domain boundaries. In the general situation, two MXCD images obtained at different extractor voltages are required. In specific cases, however, it suffices to consider a single image, if it is deformed by the stray magnetic fields compared to a known object geometry. The object geometry means its real shape, scratches or other defects. It is also possible to deposit a paramagnetic film structured in the form of stripes or a grid as a reference on the ferromagnetic sample being investigated. Received: 2 August 2001 / Accepted: 6 September 2001 / Published online: 20 December 2001  相似文献   

9.
Iron (Fe) films with a thickness ranging from 1.Onto to 80.Onto are deposited on silicone oil surfaces by a vapor phase deposition method. The films with a thickness old 〈 2.0 nm do not exhibit planar morphology but ramified aggregates instead. Magnetic force microscopy studies for the Fe films (10.0nm ≤d ≤ 80.0nto) show that the domain wall structure is widespread and irregularly shaped and the oscillation phase shift △θ, which records as the magnetic force image, changes from 0.29°to 0.81°. Correspondingly, the magnetic force gradient varies from 1.4 ×10^-3 to 4.0× 10^-3 N/m, respectively. In our measurement, the characteristic domain walls, such as Bloch walls, Neel walls and cross-tie walls, are not observed in the film system clearly.  相似文献   

10.
Heusler alloys are considered as interesting ferromagnetic electrode materials for magnetic tunnel junctions, because of their high spin polarization. We, therefore, investigated the micromagnetic properties in a prototypical thin film system comprising two different Heusler phases Co2MnSi (CMS) and Co2FeSi (CFS) separated by a MgO barrier. The magnetic microstructure was investigated by X-ray photoemission electron microscopy (XPEEM). We find a strong influence of the Heusler phase formation process on the magnetic domain patterns. SiO2/V/CMS/MgO/CFS and SiO2/V/CFS/MgO/CMS trilayer structures exhibit a strikingly different magnetic behavior, which is due to pinhole coupling through the MgO barrier and a strong thickness dependence of the magnetic ordering in Co2MnSi.  相似文献   

11.
The change of magnetic states in ultrathin films with temperature have been simulated by Monte Carlo method. A Heisenberg model with long-range dipole interactions was adopted in our calculations. The results were qualitatively in good agreement with the experimental phenomena. That is at low temperatures the magnetization is perpendicular to the plane, and at higher temperatures but below the Curie point, the magnetization is mostly within the plane. In between these two regions, the magnetization seems to be suppressed. The simulations show that the loss of magnetization is a consequence of the special magnetic states in which the local domains orientations are reverse with the neighbor ones.  相似文献   

12.
We report here a size dependence of the coercive field in the millimeter–centimeter range length scale of ribbon like samples prepared from ultra soft amorphous and nanocrystalline alloys. A model is proposed where surface pinned domain walls are considered having an effective stiffness constant linearly increasing with the demagnetization factor.  相似文献   

13.
NdFeB films with Nd compositions varied from 13.34 to 24.30 at% were deposited by DC gradient sputtering using targets Nd12.5Fe71.5B16 and Nd. The hard magnetic properties, grain growth direction and magnetic domain structures were dramatically influenced by Nd composition. The samples with intermediate Nd concentrations exhibited optimal magnetic properties and microstructures, such as large squareness ratio over 0.9, large energy product up to 174 kJ/m3, and vertical domain structure. However, the samples with higher and lower Nd compositions showed almost isotropic loops. (0 0 l) as main X-ray diffraction peaks in the optimal Nd composition region indicated most of Nd2Fe14B grains with c-axis perpendicular to the film plane, while NdFeB grains in other region are almost random growth. The good magnetic properties can be attributed to the vertical growth of Nd2Fe14B grains.  相似文献   

14.
Off-axis electron holography is used to characterize the magnetic properties of a GdBa2Cu3O7/La0.75Sr0.25MnO3 superlattice below the Curie temperature of the manganite layers, in both cross-sectional and plan-view geometry. The samples were prepared for electron microscopy using focused ion beam milling. Differences between the magnetic properties of successive manganite layers are observed in the cross-sectional sample. Magnetic ripple contrast and weakly magnetic regions are observed in plan-view geometry. Although the results may be affected by sample preparation for electron microscopy, the observed differences between the magnetic properties of the manganite layers are consistent between the different samples examined.  相似文献   

15.
The domain structures of Co ultrathin film prepared with μm- and mm-dimension laterally were acquired and compared using X-ray Photoemission Electron Microscope (PEEM). Through depositing the Co film with different thickness on two copper single-crystal surfaces; Cu(1 0 0) and Cu(1 1 0), we report the impacts of thin film lateral dimensions, crystal orientations, and film thickness to the domain structures of Co layer.  相似文献   

16.
The results of two-dimensional micromagnetic modeling of magnetization patterns in Permalloy ellipses under the influence of rotating constant-amplitude magnetic fields are discussed. Ellipses of two different lateral sizes have been studied, 0.5 μm×1.5 μm and 1 μm×3 μm. The amplitude of the rotating magnetic field was varied between simulations with the condition that it must be large enough to saturate or nearly saturate the ellipse with the field applied along the long axis of the ellipse. For the smaller ellipse size it is found that the magnetization pattern forms an S state and the direction of the net magnetization lags behind the direction of the applied field. At a critical angle of the rotating magnetic field the direction of the magnetization switches by a large angle to a new S state. Both the critical angle and the angle interval of the switch depend on field amplitude. For this new state, it is instead the applied field direction that lags behind the magnetization direction. The transient magnetization patterns correspond to multi-domain patterns including two vortices, but this state never exists for the equilibrated magnetization patterns. The behavior of the larger ellipse in rotating field is different. With the field applied along the long-axis of the ellipse, the magnetization of the ellipse is nearly saturated with a vortex close to each apex of the ellipse. As the field is rotated, this magnetization pattern remains and the net-magnetization direction lags behind the direction of the field until for a certain angle of the applied field an equilibrium multi-domain state is created. Comparisons are made with corresponding experimental results obtained by performing in-field magnetic force microscopy on Permalloy ellipses.  相似文献   

17.
In a recent paper (Goode and Rowlands J. Magn. Magn. Mater. 295 (2005) 197–218), the micromagnetic equations which govern the magnetization distribution have been studied for rectangular nano-sized magnets where the magnetization is nearly uniform. Analytical solutions to these equations have been obtained in the form of Fourier series in which only the first few terms in the series are necessary to give results accurate to a few percent. In this paper, the above method is extended to include the effects of interaction between two or more rectangular nanomagnets. The near-uniform nature of the magnetization distributions is shown to change depending on the distance the nanomagnets are apart from each other. To estimate at what distance between the nanomagnets this interaction becomes important and therefore must be included in the analysis, the demagnetizing and interaction energies are compared for an array of uniformly magnetized rectangular nanomagnets.  相似文献   

18.
Complexing agents are often used to improve the quality of electrodeposited alloys. Influence of different complexing agents with hydroxycarboxylic acid group on the electrodeposited Co-Pt-W thin films has been investigated. Cathodic polarization curves show that the polarization behaviors of electroplating bath with different complexing agents are very different. Surface morphology, phase composition and magnetic properties are observed by means of FESEM, XRD and vibrating sample magnetometer (VSM), respectively. It has been found out that, if citrate was used as complexing agent, the Co-Pt-W thin films were homogeneous and the granular crystals with the average grain size of 2 μm have been observed. Co-Pt-W thin films exhibited hexagonal close packed (hcp) lattice and strong perpendicular anisotropic magnetic behavior (Hc⊥ = 215.5 kA/m; Hc∥ = 55.4 kA/m). In the presence of gluconate, needle-like deposits were obtained and a strong face centered cubic (fcc(1 1 1)) texture was measured. The Co-Pt-W thin films showed isotropic magnetic behavior. In the case of tartate and malate, the coexistence of needle-like deposits and cellular deposits appeared. The XRD patterns showed that the mixed fcc and hcp phase formed. Perpendicular anisotropic magnetic behaviors of thin films, from malate or tartate baths, were not obvious.  相似文献   

19.
We study the behavior of surface and bulk polaritons in thin antiferromagnetic films when a dc magnetic field is applied perpendicular to the easy axis. Dispersion relations are obtained for magnetostatic modes, as well as for retarded polaritons. It is shown that, the dispersion relations of localized modes exhibit reciprocity, i.e. but they are non equivalent since they are localized in different regions. The non reciprocal character of surface modes in a semi infinite sample is regained for very thick films.  相似文献   

20.
The influence of annealing on the structure and magnetic properties of amorphous Co/Zr and Co/Hf multilayer films was studied with particular attention to the dependence of the magnetic properties, thermal stability and crystallization process on layer composition and thickness. The temperature at which crystallization commences increases from 400 to 460 °C as the layer thickness dZr or dHf increases from 6 to 18 Å, and decreases from 450 to 400 °C as dCo increases from 12 to 18 Å. Multilayers containing 19–60 at% Zr were studied. The specific magnetization was found to increase even below the temperature at which crystallization commences. Our data are compared with non-multilayer Co–Zr amorphous films and rapidly quenched metallic glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号