首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
6‐Aminopyridine‐2(1H)thiones 1 reacting with α‐halo‐compounds 2a–c afforded the alkylthiopyridine derivatives 3a–c which in turn cyclized to the corresponding thieno[2,3‐b]pyridine derivatives 4a–c . Several thieno[2,3‐b]pyridine derivatives 7, 16, 19 , pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine derivatives 6a,b, 11a–c, 21 and pyrido[3′,2′:4,5]thieno[3,2‐c]pyridazine derivatives 13, 17 were prepared starting from compounds 4a–c . © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:405–413, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20313  相似文献   

2.
A series of 2‐substituted‐4‐(2‐nitrobenzylidene)‐4,5‐dihydrooxazol‐5‐ones ( 2a‐2i ) was prepared by the Erlenmeyer's synthesis of 2‐nitrobenzaldehyde with acylglycines ( 1a‐1i ) and the series of corresponding aminoderivatives ( 3b‐3d and 3g‐3i ) was synthetised by catalytic hydrogenation of ( 2b‐2d and 3g‐3i ). Hydrazinolysis of azlactones ( 2 ) and ( 3 ) gave hydrazides ( 4 ) and ( 5 ). The hydrazides ( 5 ) were also obtained by catalytic hydrogenation of corresponding nitroderivatives ( 4 ). The cyclization reaction of hydrazides ( 4 ) or ( 5 ) proceeded to 3,5‐disubstituted‐1,6‐dihydro‐[1,2,4]triazine‐6‐ones ( 6 ) or ( 7 ). Aminoderivatives ( 7 ) were also obtained by reduction of nitro group of compounds ( 6 ). The aminoderivatives ( 7 ) were then cyclized to 3‐substituted‐1,5‐dihydro‐[1,2,4]triazino[6,5‐b]quinolines ( 9 ), resp. its tautomers ( 10 ).  相似文献   

3.
Starting from pyrimido[4,5‐e][1,3,4]oxadiazines ( 3a , 3b , 3c ) , a synthetic pathway to [1,2,4]triazolo[4′,3′:1,2]pyrimido[4,5‐e][1,3,4]oxadiazines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i ) is described. The reaction of pyrimido[4,5‐e][1,3,4]oxadiazines ( 3a , 3b , 3c ) with hydrazine hydrate afforded the corresponding hydrazino derivatives ( 4a , 4b , 4c ) . Further treatment of these compounds with different orthoesters in acetic acid gave the corresponding [1,2,4]triazolo[4′,3′:1,2]pyrimido[4,5‐e][1,3,4]oxadiazines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i ) . Compound ( 3a ) and ( 5b ) , as examples, were tested on different cancer cell lines including HeLa, MCF‐7, and HepG2. Malignant cells were cultured in DMEM medium and incubated with different concentrations of the titled compounds. Cell viability was quantitated by MTT assay. J. Heterocyclic Chem., (2010).  相似文献   

4.
A series of novel 2‐(4‐(4‐chlorophenyl)‐1H‐pyrazol‐3‐yl)‐5‐(Aryl)‐1,3,4‐oxadiazoles were synthesized by unexpected aromatization during oxidative cyclization of 4‐(4‐chlorophenyl)‐4,5‐dihydro‐1H‐pyrazole‐3‐carbohydrazones using chloramine‐T as an oxidant. The hydrazones were derived from 4‐(4‐chlorophenyl)‐4,5‐dihydro‐1H‐pyrazole‐3‐carbohydrazide and various substituted aldehydes. The structure of the synthesized compounds was confirmed by FTIR, 1H NMR, 13C NMR, and mass spectral data. The synthesized compounds were evaluated for their antitubercular and antioxidant activities. All the compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h and 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h showed good antitubercular activity against Mycobacterium tuberculosis (minimum inhibitory concentration = 25 µg/mL for 4f and 4g , 50–100 µg/mL for the rest). However, all the compounds exhibited poor antioxidant activity against 1,1‐diphenyl‐2‐picryl‐hydrazil free radical.  相似文献   

5.
Some new target products 5‐aryl‐4,5‐dihydro‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐1‐(4‐phenylthiazol‐2‐yl)pyrazoles 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j have been synthesized by reaction of 2‐bromo‐1‐phenylethanone and compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j which were prepared from the combination of thiosemicarbazide and (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j . All the structures were established by MS, IR, CHN, and 1H NMR spectra data. Synthesis of structure diversity is applied. J. Heterocyclic Chem., (2011).  相似文献   

6.
The 5,6,7,8,9,10‐hexahydro‐2‐methylthiopyrimido[4,5‐b]quinolines 4a , 4b , 4c , 4d , 5a , 5b , 5c , 5d and their oxidized forms 6a , 6b , 6c , 6d , 7a , 7b , 7c , 7d were obtained from the reaction of 6‐amino‐2‐(methylthio)pyrimidin‐4(3H)‐one 2 or 6‐amino‐3‐methyl‐2‐(methylthio)pyrimidin‐4(3H)‐one 3 and α,β‐unsaturated ketones 1a , 1b , 1c , 1d using BF3.OEt2 as catalyst and p‐chloranil as oxidizing agent. Some of the new compounds were evaluated in the US National Cancer Institute (NCI), where compound 5a presented remarkable activity against 46 cancer cell lines, with the most important GI50 values ranging from 0.72 to 18.4 μM from in vitro assays.  相似文献   

7.
In continuation of our previous work, a series of novel thiophene derivatives 4 , 5 , 6 , 8 , 9 , 9a , 9b , 9c , 9d , 9e , 10 , 10a , 10b , 10c , 10d , 10e , 11 , 12 , 13 , 14 , 15 , 16 were synthesized by the reaction of ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate ( 1 ) or 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile ( 2 ) with different organic reagents. Fusion of 1 with ethylcyanoacetate or maleic anhydride afforded the corresponding thienooxazinone derivative 4 and N‐thienylmalimide derivative 5 , respectively. Acylation of 1 with chloroacetylchloride afforded the amide 6 , which was cyclized with ammonium thiocyanate to give the corresponding N‐theinylthiazole derivative 8 . On the other hand, reaction of 1 with substituted aroylisothiocyanate derivatives gave the corresponding thiourea derivatives 9a , 9b , 9c , 9d , 9e , which were cyclized by the action of sodium ethoxide to afford the corresponding N‐substituted thiopyrimidine derivatives 10a , 10b , 10c , 10d , 10e . Condensation of 2 with acid anhydrides in refluxing acetic acid afforded the corresponding imide carbonitrile derivatives 11 , 12 , 13 . Similarly, condensation of 1 with the previous acid anhydride yielded the corresponding imide ethyl ester derivatives 14 , 15 , 16 , respectively. The structures of newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, MS spectral data, and elemental analysis. The detailed synthesis, spectroscopic data, LD50, and pharmacological activities of the synthesized compounds are reported.  相似文献   

8.
4‐Aminopyrazole‐3‐ones 4b, e, f were prepared from pyrazole‐3‐ones 1b‐d in a four‐step reaction sequence. Reaction of the latter with methyl p‐toluenesulfonate gave 1‐methylpyrazol‐3‐ones 2b‐d . Compounds 2b‐d were treated with aqueous nitric acid to give 4‐nitropyrazol‐3‐ones 3b‐d. Reduction of compounds 3b‐d by catalytic hydrogenation with Pd‐C afforded the 4‐amino compounds 4b, e, f. Using similar reaction conditions, nitropyrazole‐3‐ones derivatives 2c, d were reduced into aminopyrazole‐3‐ones 5e, f. 4‐Iodopyrazole‐3‐ones 7a, 7c and 8 were prepared from the corresponding pyrazol‐3‐ones 2a, 2c and 6 and iodine monochloride or sodium azide and iodine monochloride.  相似文献   

9.
Synthesis of the title compounds was achieved using the anils 2a , 2b , 2c , 2d , 2e and 5a , 5b , 5c derived from the 4‐aminopyrazole 1 as starting materials. These compounds were allowed to react with mercaptoacetic acid in boiling dry benzene to afford the corresponding thiazolidinones and spiro‐thiazolidinones 3a , 3b , 3c , 3d , 3e and 6a , 6b , 6c , respectively. Pictet—Spengler reaction of the 4‐aminopyrazole hydrochloride 7 with aromatic aldehydes and cyclic ketones resulted in the formation of new pyrazolo[4,3‐e]pyrrolo[1,2‐a]pyrazines 8a , 8b , 8c , 8d , 8e and 9a , 9b , respectively. Other derivatives of pyrazolo pyrrolopyrazines 10 and 11 were obtained via the reaction of the amino derivative 1 with 1,1′‐carbonyldiimidazol and CS2, respectively. J. Heterocyclic Chem., (2011).  相似文献   

10.
The o‐dihydroxy‐ ( 2a‐b ), dimethoxy ( 3a‐b ), ethylendioxy‐ ( 4a‐b ) and macrocyclic polyethers ( 4c‐i ) are the initial compounds while the 2,4‐dinitrophenylhydrazone compounds ( 5a‐d, 6a‐i ) represent new derivatives. Novel hydrazone compounds were synthesized from the corresponding cyclic ketones ( 4a‐i ) and 2,4‐dinitrophenylhydrazine in H2SO4/EtOH/H2O solution at room temperature for 1 h. The structures of obtained hydrazone compounds were confirmed by 1H‐NMR, 13C‐NMR, EI‐MS, IR spectra and elemental analysis.  相似文献   

11.
The reactions of 2‐amino‐4,5‐dihydro‐3‐furancarbonitriles 1a‐d with α,β‐unsaturated carbonyl compounds in the presence of sodium ethoxide (0.1 equivalent) gave the corresponding Michael adducts 2a‐d , 3a‐d and 4a‐d. Compounds 2a‐d and 3a‐c reacted with sodium alkoxide (1 equivalent) to yield the corresponding 7a‐alkoxyhexahydrofuro[2,3‐b]pyridines 5a‐d, 6a‐d, 7a‐c and 8a‐c . Treatment of 5a‐d, 6a‐d, 7a‐c and 8a‐c with potassium tert‐butoxide produced the corresponding dihydrofuro[2,3‐b]pyridines 9a‐d and 10a‐c . The reaction of 4a‐c with sodium ethoxide (1 equivalent) afforded the corresponding dihydro‐furo[2,3‐b]pyridines 11a‐c .  相似文献   

12.
2‐Arnino‐4,5‐dihydro‐3‐thiophenecarbonitriles 1a‐c reacted with α,β‐unsaturated ketones (e.g. methyl vinyl ketone 2 and benzalacetone 3 ) in the presence of titanium(IV) chloride to give the corresponding Michael adducts 4a‐c and 5a‐c. Thermal treatment of compounds 4a‐c and 5a‐c with titanium(IV) chloride caused intramolecular cyclocondensation to yield the corresponding tetrahydrothieno[2,3‐b]pyridines 6a‐c and 7a‐c. Aromatization of 6a‐c and 7a‐c with potassium tert‐butoxide in refluxing tert‐butyl alcohol pro ceeded smoothly to afford the corresponding dihydrothieno[2,3‐b]pyridines 8a‐c and 9a‐c.  相似文献   

13.
4‐Bromo‐1‐phenyl‐3,5‐pyrazolidinedione 2 reacted with different nucleophilic reagents to give the corresponding 4‐substituted derivatives 3–8 . The cyclized compounds 9–11 were achieved on refluxing compounds 3 , 4 or 6a in glacial acetic acid or diphenyl ether. 4,4‐Dibromo‐1‐phenyl‐3,5‐pyrazolidinedione 12 reacted with the proper bidentates to give the corresponding spiro 3,5‐pyrazolidinediones 13–15 , respectively. The 4‐aralkylidine derivatives 16a‐c , were subjected to Mannich reaction to give Mannich bases 17a‐c‐22a‐c , respectively. 4‐(p‐Methylphenylaminomethylidine)‐1‐phenyl‐3,5‐pyrazolidinedione 23 or 4‐(p‐methylphenylazo)‐1‐phenyl‐3,5‐pyrazolidinedione 29 were prepared and reacted with active nitriles, cyclic ketones and N,S‐acetals to give pyrano[2,3‐c]pyrazole, pyrazolo[4′,3′:5,6]pyrano[2,3‐c]pyrazole, spiropyrazole‐4,3′‐pyrazole and spiropyrazole‐4,3′‐[1,2,4]triazolane derivatives 24–34 , respectively.  相似文献   

14.
The reactions of 2‐amino‐4,5‐dihydro‐3‐furancarboxarnides 1a,b with cyanomethylene compounds (such as alkyl cyanoacetates and malononitrile) gave the corresponding ring‐opened products 2a‐f. Compounds 2a‐d reacted with methanesulfonic acid to give the corresponding α‐alkylidene‐γ‐butyrolactones 3a‐d. On the other hand, treatment of 2e,f with methanesulfonic acid yielded 3‐pyridinecarbonitrile derivatives 4a,b.  相似文献   

15.
The reaction of 3‐benzoylcyanomethylidine‐1(H)‐indole‐2‐one ( 1 ) with a variety of active methylene compounds, thioglycolic acid, glycine, hydrazine hydrate and phenyl hydrazine led to the formation of compounds 4a‐d‐10 . 3‐Thiosemicarbazide‐1(H)‐indole‐2‐one 2 on reaction with α‐halocarbonyl compounds gave compounds 11a‐c, 12a‐c . The latter compounds on heating with phosphoryl chloride, cyclization takes place via losing water to give the angular tetracyclic compounds 13a,b and 14a‐c . Cyanoacetic hydrazone derivative 3 readily cyclized upon heating in triethyl orthoformate to give the tricyclic system, oxopyridazino indole 15 . On the other hand, the reaction of 3 with benzylidine malononitrile and benzylidene ethylcyanoactate gave the pyranyl hydrazone derivatives 16a,b .  相似文献   

16.
Several new derivatives of oxazolo[5,4‐d]pyrimidine ( 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h ) have been synthesized through the reaction of 2,4‐dichloro‐6‐methyl‐5‐nitropyrimidine ( 2 ) with aryl carboxylic acids in refluxing POCl3. Further treatment of compounds ( 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h ) with hydrazine hydrate gave the hydrazine derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h ) that were subsequently cyclized into a novel heterocyclic system, oxazolo[5,4‐d][1,2,4]triazolo[4,3‐a]pyrimidine ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m , 5n , 5o , 5p ) and ( 7a , 7b , 7c , 7d ) on treatment with triethylorthoesters or carbondisulfide and alkylhalides, respectively.  相似文献   

17.
The Schiff bases 3a‐h obtained from 4‐amino‐1,2,4‐triazol‐3‐ones 1a‐h when subjected to Japp‐Klingemann reaction yielded the corresponding 3‐{2‐[(2‐aryl‐5‐methyl‐3H‐[1,2,4]‐triazol‐3‐one‐4‐yl)]‐iminophenyl}‐pentane‐2,4‐diones 4a‐h . These diones on cyclisation with N2H4 yielded the title compounds 5a‐h . The energetics of the Keto‐enol tautomers of the diones was calculated by semiemperical calculations using AM1 and PM3 methods. All these compounds were screened for their antimicrobial activity against few microbes and most of them exhibited fungal inhibition more than the reference drugs used.  相似文献   

18.
Series of phosphorylated coumarin derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j ) were synthesized by Pechmann condensation, phosphorylation, and debenzylation reactions in very good yields. Thus, synthesized compounds ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j ) were evaluated for their α‐glucosidase and 1,1‐diphenyl‐2‐picrylhydrazyl scavenging activities; few compounds showed moderate to good activity. J. Heterocyclic Chem., 00 , 00 (2011).  相似文献   

19.
3‐Benzyl‐4‐phenyl‐1,2,4‐triazole‐5‐thiol ( 1 ) was synthesized and used as starting material for preparation of 1,2,4‐triazole bearing substituted thiosemicarbazides moiety ( 4a‐d ) in high yields. The thiosemicarbazides 4a‐d were cyclized in basic medium to give two triazole rings linked by thiomethylene group ( 5a‐d ), while cyclization of thiosemicarbazides 4a‐d with chloroacetyl chloride in the presence of CHCl3 and K2CO3 afforded the thiazolidinone derivatives 6a‐d . The reaction of thiosemicarbazides 4a‐c with phenacyl bromide in the presence of EtOH and fused CH3COONa gave the corresponding thiazoline ring systems 7a‐c . Condensation of the 3‐benzyl‐1,2,4‐triazole‐5(1H)‐thiol ( 1 ) with chloroacetic acid and aromatic aldehydes ( 8a‐ g) in boiling acetic acid/acetic anhydride mixture in the presence of fused sodium acetate gave one single isomer only, which might be 9a‐g or 10a‐g . Upon application of Micheal addition reaction on compounds 9a‐e with cyclic secondary amines such as piperidine or morpholine the 2‐benzyl‐6‐(α‐amino‐aryl/methyl)‐1,3‐thiazolo[3,2‐ b][1,2,4]‐triazol‐5‐ols ( 11a‐j ) were obtained in good yields The structure of all new compounds were determined using both spectral and elemental analyses.  相似文献   

20.
A new series of 9‐substituted‐4,10‐dimethylpyrano[2,3‐f]cinnolin‐2‐ones ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m ) were synthesized via intramolecular cyclization of the respective acyl amidrazone derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j , 4k , 4l , 4m ), catalyzed by polyphosphoric acid. Compounds ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j , 4k , 4l , 4m ) were synthesized through direct interaction of coumarin‐7‐yl hydrazonoyl chloride ( 3 ) with the corresponding cyclic sec‐amines in the presence of triethylamine. The structures of the new compounds were confirmed by elemental analyses, NMR, and MS spectral data. The antitumor activity of compounds 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m was evaluated in vitro on breast cancer cell line (MCF‐7) by a cell viability assay utilizing the tetrazolium dye 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide. Among the compounds tested, compounds 5d , 5f , 5k , and 5h showed potential anti‐MCF‐7 activity and were able to reduce the viability after 72 h to less than 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号