首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

2.
[Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields.  相似文献   

3.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

4.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

5.
[(Cp4i Rh)2(μ‐Cl)3] [Rh(CO)2Cl2] (Cp4i = tetraisopropyl‐cyclopenta‐dienyl) has been prepared and its crystal is in the space group of Pbar with a= 0.9417 (8), b = 1.4806 (3), c = 1.5062 (2) nm, a = 92.980(10), β = 97.42(3), γ = 93.98 (3)°, V = 2.0735(18) nm3 and Z = 2. The crystal structure consists of a cation of [(η5‐Cp4i) Rh (III)(μ‐Cl)3 Rh (III) (η5‐Cp4i)]+ and an anion of [Rh (I) (CO)2 Cl2]. The two bulky tetraisopropylcyclopentadienyl ligands are in the ecliptic conformation with angle of 10.19° between two cyclopentadienyl ring planes.  相似文献   

6.
tBu2P‐P=P(Me)tBu2 reacts with [Fe2(CO)9] to give [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)3}{Fe(CO)4}] ( 1 ) and [trans‐(tBu2MeP)2Fe(CO)3]( 2 ). With [(η2‐C8H14)2Fe(CO)3] in addition to [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)2PMetBu2}‐{Fe(CO)4}] ( 10 ) and 2 also [(μ‐PtBu2){μ‐P‐Fe(CO)3‐PMetBu2}‐{Fe(CO)3}2(Fe‐Fe)]( 9 ) is formed. 1 crystallizes in the monoclinic space group P21/c with a = 875.0(2), b = 1073.2(2), c = 3162.6(6) pm and β = 94.64(3)?. 2 crystallizes in the monoclinic space group P21/c with a = 1643.4(7), b = 1240.29(6), c = 2667.0(5) pm and β = 97.42(2)?. 9 crystallizes in the monoclinic space group P21/n with a = 1407.5(5), b = 1649.7(5), c = 1557.9(16) pm and β = 112.87(2)?.  相似文献   

7.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

8.
Complex fac‐[Fe(CO)3(TePh)3]? was employed as a “metallo chelating” ligand to synthesize the neutral (CO)3Mn(μ‐TePh)3Fe(CO)3 obtained in a one‐step synthesis by treating fac‐[Fe(CO)3(TePh)3]? with fac‐[Mn‐(CO)3(CH3CN)3]+. It seems reasonable to conclude that the d6 Fe(II) [(CO)3Fe(TePh)3]? fragment is isolobal with the d6 Mn(I) [(CO)3Mn(TePh)3]2? fragment in complex (CO)3Mn(μ‐TePh)3Fe(CO)3. Addition of fac‐[Fe(CO)3(TePh)3]? to the CpNi(I)(PPh3) in THF resulted in formation of the neutral CpNi(TePh)(PPh3) also obtained from reaction of CpNi(I)(PPh3) and [Na][TePh] in MeOH. This investigation shows that fac‐[Fe(CO)3(TePh)3]? serves as a tridentate metallo ligand and tellurolate ligand‐transfer reagent. The study also indicated that the fac‐[Fe(CO)3(SePh)3]? may serve as a better tridentate metallo ligand and chalcogenolate ligand‐transfer reagent than fac‐[Fe(CO)3(TePh)3]? in the syntheses of heterometallic chalcogenolate complexes.  相似文献   

9.
Regioselective Ring Opening Reactions of Unifold Unsaturated Triangular Cluster Complexes [M2Rh(μ‐PR2)(μ‐CO)2(CO)8] (M2 = Re2, Mn2; R = Cy, Ph; M2 = MnRe, R = Ph) with Diphosphanes Equimolar amounts of the triangular title compounds and chelates of the type (Ph2P)2Z (Z = CH2, DPPM ; C=CH2, EPP ) react in thf solution at –40 to –20 °C under release of the labile terminal carbonyl ligand attached to the rhodium atom in good yields (70–90%) to ring‐opened unifold unsaturated complexes [MRh(μ‐PR2)(CO)4M(DPPM bzw. EPP)(μ‐CO)2(CO)3] (DPPM: M2 = Re2, R = Cy 1 , Ph 2 ; Mn2, Cy 5 , Ph 6 ; MnRe, Cy 7 . EPP: M2 = Re2, R = Cy 8 ; Mn2, Cy 10 ). Complexes 1 , 2 and 8 react subsequently under minor uptake of carbon monoxide and formation of the valence saturated complexes [ReRh(μ‐PR2)(CO)4M(DPPM bzw. EPP) (CO)6] (DPPM: R = Cy 3 , Ph 4 . EPP: R = Cy 9 ). Separate experiments ascertained that the regioselective ring opening at the M–M‐edge of the title compounds is limited to reactions with diphosphanes chelates with only one chain member and that the preparation of the unsaturated complexes demands relatively good donor ability of both P atoms. As examples for both types of compounds the molecular structures of 8 and 3 have been determined from single crystal X‐ray structure analysis. Additionally all new compounds are identified by means of ν(CO)IR, 1H‐ and 31P‐NMR data. This includes complexes with a modified chain member in 1 and 5 which, after deprotonation reaction to carbanionic intermediates, could be trapped with [PPh3Au]+ cations as rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHAuPPh3)(μ‐CO)2(CO)3] (M2 = Re 17 , Mn 18 ) and products rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHCH2R)(μ‐CO)2(CO)3] (M2 = Re, R = Ph 19 , n‐Bu 21 , Me 23 ; Mn, Ph 20 , n‐Bu 22 , Me 24 ) which result from Michael‐type addition reactions of 8 or 10 with strong nucleophiles LiR.  相似文献   

10.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)4(μ‐PCy2)2(μ‐Ph2PCH2PPh2)(μ3‐S){μ3‐η2‐CSC(S)S}] [Ru3(CO)4(μ‐H)3(μ‐PCy2)3(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2) reacts with CS2 at room temperature and yields the open 50 valence electron cluster [Ru3(CO)4(μ‐PCy2)2(μ‐dppm)(μ3‐S){μ3‐η2‐CSC(S)S}] ( 3 ) containing the unusual μ3‐η2‐C2S3 mercaptocarbyne ligand. Compound 3 was characterized by single crystal X‐ray structure analysis.  相似文献   

11.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

12.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

13.
Synthesis and Crystal Structure of [C(NMe2)3]2[(CO)4Fe(μ‐InCl2)2Fe(CO)4] Treatment of [C(NMe2)3]2[(CO)4FeInCl3] ( 1 ) with hot water produces the dinuclear complex [C(NMe2)3]2[(CO)4Fe(μ‐InCl2)2Fe(CO)4] ( 2 ) which could be crystallized from dichloromethane/pentane. 2 crystallizes in the monoclinic space group P21/n with a = 835.7(1), b = 1187.8(1), c = 1902.7(1) pm, β = 91.877(5)° and Z = 2. The anion contains a four‐membered Fe—In—Fe—In ring with octahedral environment at the iron atom and tetrahedral coordination at the In atom.  相似文献   

14.
Diphenyldichalcogenides (PhE)2 (E = Te, Se) react with Fe(0)-phenylchalcogenolate [PPN] [PhEFe(CO)4] to yield the products of oxidative addition, Fe(II)-mixed-phenylchalcogenolate fac- [PPN][Fe(CO)3(TePh)n(ScPh)3-n] (n = 1, 2). Reactions of [PPN][REFe(CO)4] (E=Se, R=Me; E=S, R=Et) and diphenyldichalcogenides yielded ligand-exchange products [PPN][PhEFe(CO)4] (E=Te, Se, S). The compounds [Fe(CO)3(TePh)(ScPh)2]? (l) and [Fe(CO)3(TePh)2 (2) crystallize in the isomorphous monoclinic space group C2/e, with a = 32.035(8), b = 11.708(6), c = 28.909(6) Å, Z = 8, R = 0.048, and Rw = 0.044 (1); with a = 32.089(5), b= 11.745(2), c = 28.990(8) Å, Z = 8, R = 0.048, and Rw = 0.048 (2). The complexes 1 and 2 crystallize as discrete cations of PPN+ and anions of [Fe(CO)3(TcPh)u(ScPh)3-n] (n=1, 2), and one half solvent molecule THF. The geometry around Fe(II) is a distorted octahedron with three carbonyl groups and three phenylchalcogenolate ligands occupying facial positions.  相似文献   

15.
Reaction of the binuclear μ‐carbamoyl complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(HNMe2)] ( 1 ) in toluene with the chelating ligands Ph2PCH2PPh2 (dppm) and Ph2PCH2CH2PPh2 (dppe) gives different results. With dppm only the complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(dppm)] ( 3 ) with a dangling ligand is obtained under replacement of amine, whereas with dppe depending on the reaction conditions up to three compounds are found. A 1 : 1 mixture of the educts generates the related complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(dppe)] ( 4 ) together with the tetranuclear complex [{(CO)3Fe(μ‐Me2NCO)2Fe(CO)2}2(dppe)] (5 ). 4 slowly converts into [(CO)3Fe(μ‐Me2NCO)2Fe(CO)(dppe)] ( 6 ) with dppe acting as a chelating ligand. 6 is the first compound in this series in which one of the five CO groups is replaced by another donor. A 2 : 1 molar ratio of 1 and dppe quantitatively produces 5 . Addition of CO to a solution of 6 proceeds under slow reversible conversion of the complex into 4 . The compounds were characterized by the usual spectroscopic methods; 3 , 5 and 6 were also studied by X‐ray diffraction analyses.  相似文献   

16.
The title compounds with terminal N‐heterocyclic carbenes, namely octacarbonyl(imidazolidinylidene‐κC2)di‐μ3‐sulfido‐triiron(II)(2 FeFe), [Fe3(C3H6N2)(μ3‐S)2(CO)8], (I), and octacarbonyl(1‐methylimidazo[1,5‐a]pyridin‐3‐ylidene‐κC3)di‐μ3‐sulfido‐triiron(II)(2 FeFe), [Fe3(C8H8N2)(μ3‐S)2(CO)8], (II), have been synthesized. Each compound contains two Fe—Fe bonds and two S atoms above and below a triiron triangle. One of the eight carbonyl ligands deviates significantly from linearity. In (I), dimers generated by an N—H...S hydrogen bond are linked into [001] double chains by a second N—H...S hydrogen bond. These chains are packed by a C—H...O hydrogen bond to yield [101] sheets. In (II), dimers generated by an N—H...S hydrogen bond are linked by C—H...O hydrogen bonds to form [111] double chains.  相似文献   

17.
The synthesis and crystal structure of the multidentate PPN ligand 2‐[bis(diisopropylphosphanyl)methyl]‐6‐methylpyridine (L ), C19H35NP2, are described. In the isostructural tetrahedral Fe and Co complexes of type LM Cl2 (M = Fe, Co), namely {2‐[bis(diisopropylphosphanyl)methyl]‐6‐methylpyridine‐κ2P ,N }dichloridoiron(II), [FeCl2(C19H35NP2)], and {2‐[bis(diisopropylphosphanyl)methyl]‐6‐methylpyridine‐κ2P ,N }dichloridocobalt(II), [CoCl2(C19H35NP2)], the ligand adopts a bidentate P ,N‐coordination, whereas in the case of the octahedral Mn complex {2‐[bis(diisopropylphosphanyl)methyl]‐6‐methylpyridine‐κ2P ,P ′}bromidotricarbonylmanganese(I), [MnBr(C19H35NP2)(CO)3], the ligand coordinates via both P atoms to the metal centre.  相似文献   

18.
Ru(CO)3 [Ph2PN (i‐Bu) PPh2‐P, P] was conveniently obtained by the reaction of Ru(DMSO)4Cl2 with Ph2PN(i‐Bu)‐PPb2 and CO in the presence of Zn powder under mild conditions. The crystal and molecular structure was determined by X‐ray diffraction. This compound possesses a distorted trigonal bipyramidal configuration.  相似文献   

19.
The compounds tricarbonyl(η5‐1‐iodocyclopentadienyl)manganese(I), [Mn(C5H4I)(CO)3], (I), and tricarbonyl(η5‐1‐iodocyclopentadienyl)rhenium(I), [Re(C5H4I)(CO)3], (III), are isostructural and isomorphous. The compounds [μ‐1,2(η5)‐acetylenedicyclopentadienyl]bis[tricarbonylmanganese(I)] or bis(cymantrenyl)acetylene, [Mn2(C12H8)(CO)6], (II), and [μ‐1,2(η5)‐acetylenedicyclopentadienyl]bis[tricarbonylrhenium(I)], [Re2(C12H8)(CO)6], (IV), are isostructural and isomorphous, and their molecules display inversion symmetry about the mid‐point of the ligand C[triple‐bond]C bond, with the (CO)3M(C5H4) (M = Mn and Re) moieties adopting a transoid conformation. The molecules in all four compounds form zigzag chains due to the formation of strong attractive I...O [in (I) and (III)] or π(CO)–π(CO) [in (I) and (IV)] interactions along the crystallographic b axis. The zigzag chains are bound to each other by weak intermolecular C—H...O hydrogen bonds for (I) and (III), while for (II) and (IV) the chains are bound to each other by a combination of weak C—H...O hydrogen bonds and π(Csp2)–π(Csp2) stacking interactions between pairs of molecules. The π(CO)–π(CO) contacts in (II) and (IV) between carbonyl groups of neighboring molecules, forming pairwise interactions in a sheared antiparallel dimer motif, are encountered in only 35% of all carbonyl interactions for transition metal–carbonyl compounds.  相似文献   

20.
Bis(tetraphenylphosphonium)‐tris(μ‐hydroxo)hexaaquatriberylliumpentachloride, (Ph4P)2[Be3(μ‐OH)3(H2O)6]Cl5 ( 1 ), was surprisingly obtained by reaction of (Ph4P)N3 · n H2O with BeCl2 in dichloromethane suspension and subsequent crystallization from acetonitrile to give single crystals of composition 1· 5.25CH3CN. According to the crystal structure determination space group P , Z = 2, lattice dimensions at 100 K: a = 1354.8(2), b = 1708.7(2), c = 1753.2(2) pm, α = 114.28(1)°, β = 94.80(1)°, γ = 104.51(1)°, R1 = 0.0586] the [Be3(μ‐OH)3(H2O)6]3+ cations form six‐mem‐bered Be3O3 rings with boat conformation and distorted tetrahedrally coordinated beryllium atoms with the terminally coordinated H2O molecules. The structure ist characterized by a complicated three dimensional hydrogen‐bridging network including O–H ··· O, O–H ··· Cl, and O–H ··· NCCH3 contacts. DFT calculations result in nearly planar [Be3(OH)3] six‐membered ring conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号