首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 892 毫秒
1.
Moxifloxacin, a novel fluoro­quinolone with a broad spectrum of anti­bacterial activity, is available as the solvated monohydro­chloride salt 7‐[(S,S)‐2‐aza‐8‐azoniabicyclo­[4.3.0]non‐8‐yl]‐1‐cyclo­propyl‐6‐fluoro‐8‐meth­oxy‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylic acid chloride–water–methanol (2/1/1), C21H25FN3O4+·Cl·0.5H2O·0.5CH3OH. The asymmetric unit contains two cations, two chloride ions, a mol­ecule of water and one methanol mol­ecule. The two cations adopt conformations that differ by an almost 180° rotation with respect to the piperidinopyrrolidine side chain. The cyclo­propyl ring and the meth­oxy group are not coplanar with the quinoline ring system. The carboxylic acid function, the protonated terminal piperidyl N atom, the water mol­ecule, the chloride ion and the methanol mol­ecule participate in O—H⋯O, O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonding, linking the mol­ecules into extended two‐dimensional networks.  相似文献   

2.
The Ru atom in the title compound, [RuCl2{P(C6H5)3}2{C6H4(NH)2}]·1.33CH3OH·0.33CH2Cl2, shows a six‐coordinate octahedral geometry, with a trans arrangement of the tri­phenyl­phosphine groups. One and a half mol­ecules of complex, two mol­ecules of methanol and a half mol­ecule of di­chloro­methane form the asymmetric unit, with crystallographic twofold rotation symmetry for the complex mol­ecule in a special position.  相似文献   

3.
In the title adduct, 1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]dec­ane–4‐nitro­benzene‐1,2‐diol–water (1/2/1), C6H12N4·2C6H5NO4·H2O, the hexa­methyl­ene­tetra­mine mol­ecule acts as an acceptor of intermolecular O—H?N hydrogen‐bonding interactions from the water mol­ecule and the hydroxy groups of one of the two symmetry‐independent 4‐nitro­catechol mol­ecules. The structure is built from molecular layers which are stabilized by three intermolecular O—H?O, two intermolecular O—H?N and four intermolecular C—H?O hydrogen bonds. The layers are further interconnected by one additional intermolecular O—H?N and two intermolecular C—H?O hydrogen bonds.  相似文献   

4.
The tris­(1H‐benzimidazol‐2‐yl­meth­yl)­amine (ntb) mol­ecule crystallizes in different solvent systems, resulting in two kinds of adduct, namely the monohydrate, C24H21N7·H2O or ntb·H2O, (I), and the acetonitrile–methanol–water (1/0.5/1.5) solvate, C24H21N7·C2H3N·0.5CH4O·1.5H2O or ntb·1.5H2O·0.5MeOH·MeCN, (II). In both cases, ntb adopts a tripodal mode to form hydrogen bonds with a solvent water mol­ecule via two N—H⋯O and one O—H⋯N hydrogen bond. In (I), the ntb·H2O adduct is further assembled into a two‐dimensional network by N—H⋯N and O—H⋯N hydrogen bonds, while in (II), a double‐stranded one‐dimensional chain structure is assembled via N—H⋯O and O—H⋯O hydrogen bonds, with the acetonitrile mol­ecules located inside the cavities of the chain structure.  相似文献   

5.
In the title compound, C2H10N22+·2C3H3O4?·H2O, the hydrogen malonate anion has an intramolecular O—H?O hydrogen bond of 2.430 (2) Å. The water mol­ecule lies on a twofold axis and connects the anions into pairs through hydrogen bonds of 2.734 (1) Å. The ethyl­enedi­ammonium cation lies across an inversion centre. Each of the ammonium protons is involved in hydrogen bonding to an anion or a water mol­ecule [N?O 2.815 (2)–2.875 (2) Å].  相似文献   

6.
Crystals of the title compound, [Cr(C4H5NO4)(C6H6N4S2)(H2O)]Cl·H2O, consist of CrIII complex cations, Cl counter‐ions and lattice water mol­ecules. The complex cation assumes an octahedral coordination geometry, formed by a tridentate imino­di­acetate dianion (IDA), a di­amino­bi­thia­zole (DABT) mol­ecule and a water mol­ecule. The planar DABT group chelates the CrIII ion with normal Cr—N distances [2.0574 (17) and 2.0598 (17) Å], but the DABT mol­ecule is inclined to the coordination plane by a dihedral angle of 17.23 (7)°. In the monodentate carboxylate groups of the IDA ion, the coordinated C—O bonds [1.288 (3) and 1.284 (3) Å] are much longer than the uncoordinated C—O bonds [1.222 (3) and 1.225 (3) Å].  相似文献   

7.
The title solvate of the steroid 17β‐estradiol (E2) with methanol and water, C18H24O2·0.67CH4O·0.33H2O, is the first E2 derivative to contain three crystallographically independent mol­ecules in the asymmetric unit. The three steroid mol­ecules, along with two methanol mol­ecules and a water mol­ecule, create a three‐dimensional hydrogen‐bonded system. Three‐sided columns are formed, with the estradiol mol­ecules aligned lengthwise parallel to (101), and joined by solvent mol­ecules at both hydro­philic ends. The three estradiol mol­ecules differ slightly in their ring‐bowing angles, i.e. the angle between the mean plane of the A ring and that of the BCD ring; this angle ranges from 7.1 to 12.2°.  相似文献   

8.
The title di­phenyl­carbene porphyrin complex (di­phenyl­carbenyl‐κC)(methanol‐κO)(5,10,15,20‐tetra‐p‐tolyl­por­phy­rin­ato‐κ4N)ruthenium(II) methanol solvate, [Ru­(C13H10)(C48H36N4)(CH4O)]·CH4O, has a six‐coordinate Ru atom with a methanol mol­ecule as the second axial ligand. The carbene fragment is slightly distorted from an ideal sp2 configuration, with a C(phenyl)—C(carbene)—C(phenyl) angle of 112.2 (3)°. The Ru—C bond length of 1.845 (3) Å is comparable with other carbene complexes. The two phenyl rings of the carbene ligand are perpendicular to the carbene plane. Methanol solvate mol­ecules link the methanol ligands of adjacent porphyrin complexes via hydrogen bonds.  相似文献   

9.
In the title 1/2/2 adduct, C4H12N22+·2C6H3N2O5?·2H2O, the dication lies on a crystallographic inversion centre and the asymmetric unit also has one anion and one water mol­ecule in general positions. The 2,4‐di­nitro­phenolate anions and the water mol­ecules are linked by two O—H?O and two C—H?O hydrogen bonds to form molecular ribbons, which extend along the b direction. The piperazine dication acts as a donor for bifurcated N—H?O hydrogen bonds with the phenolate O atom and with the O atom of the o‐nitro group. Six symmetry‐related molecular ribbons are linked to a piperazine dication by N—H?O and C—H?O hydrogen bonds.  相似文献   

10.
The title compound, [FeCl2(C24H21N7)]Cl·C2H5OH·2H2O, comprises an [FeCl2(C24H21N7)]+ cation, a Cl anion, an ethanol mol­ecule and two water mol­ecules. The cations are linked by π–π and C—H⋯π inter­actions into one‐dimensional tapes, and hydrogen bonding between the cations, Cl anions, and ethanol and water mol­ecules links these tapes into a three‐dimensional network.  相似文献   

11.
The title compound, C21H23ClN4O2·0.5H2O, contains two independent mol­ecules in the asymmetric unit. In each mol­ecule the piperazine ring adopts a chair conformation; the deviations of the piperazine N atoms from the best plane through the remaining four C atoms are ?0.678 (3) and 0.662 (3) Å in mol­ecule A, and 0.687 (3) and ?0.700 (3) Å in mol­ecule B. The mol­ecules are linked by two hydrogen bonds of the O—H?N type involving the O atom of the water mol­ecule of crystallization.  相似文献   

12.
The title compound, [CuCl(CH4N2S)2]·2C11H6N2O·H2O, consists of mol­ecules of a CuI–thio­urea complex, free 4,5‐di­aza­fluoren‐9‐one (dafone) and crystalline water. The planar complex mol­ecule has trigonal coordination geometry around the CuI atom. The dafone and water mol­ecules, which are hydrogen bonded to the CuI complex, are approximately coplanar with this complex. The crystal displays a sheet structure and π–π stacking is observed between neighbouring sheets.  相似文献   

13.
The title compound, C2H7N4O+·CH4O3P·H2O, crystallized with one carbamoyl­guanidinium cation, one methyl­phos­phonate anion and one water mol­ecule in the asymmetric unit. All H atoms of the carbamoyl­guanidinium ion are involved in a hydrogen‐bonded network. The CH3PO2(OH) anions, together with the water mol­ecules, build O—H⋯O hydrogen‐bonded ribbons around a 21 screw axis parallel to the b axis. Neighbouring ribbons are not directly connected via hydrogen bonding. The carbamoyl­guanidinium cations are linked to these ribbons by N—H⋯O bridges and build a slightly buckled layer structure, the interlayer distance being b/2.  相似文献   

14.
In the title compound, C14H15N3O4·H2O, there is a strong conjugation push–pull effect across the central double bond, as reflected in the molecular dimensions and the planarity of the en­amino­ne portion of the mol­ecule. The mol­ecule has an intramolecular hydrogen bond between the NH and CO groups in the Z configuration, adopting the chelated form. The two π systems of the mol­ecule (1‐methyl­benz­imidazole and en­amino­ne) are deconjugated and tilted with respect to each other by 15.6 (2)°. The solvent water mol­ecule is hydrogen bonded to the N1 atom of the 1‐methyl­benzimidazolyl group.  相似文献   

15.
The title adduct, C5H14N22+·C8H3NO62−·C8H5NO6·H2O, crystallizes in the monoclinic space group P21. All O atoms of the 4‐nitro­phthalate anions and neutral 4‐nitro­phthalic acid mol­ecules are involved in hydrogen bonding with the piperazine dication and the water mol­ecule of crystallization.  相似文献   

16.
The structure of the title compound, fac‐[ReBr(C14H12N2O)(CO)3]·CH4O, consists of neutral mononuclear mol­ecular units of distorted octahedral geometry, with the three carbonyl donors in a facial orientation. The remaining coordination sites are occupied by the Br atom, the pyridine N atom and the ketone O‐atom donor of the ligand. The mol­ecules pack in stacks of antiparallel tapes, with a network of classical (O—H⋯Br) and non‐classical (C—H⋯O) hydrogen bonds between the methanol solvent mol­ecule and the complex mol­ecule.  相似文献   

17.
The mol­ecular structures of the complexes imidazolium 6,6′‐di‐tert‐butyl‐4,4′‐dimethyl‐2,2′‐thio­diphenyl phosphate, C3H5N2+·C22H28O4PS, (I), and imidazolium 6,6′‐di‐tert‐butyl‐4,4′‐dimethyl‐2,2′‐thio­diphenyl phosphate diisopropyl hydrazo­dicarboxyl­ate hemisolvate, C3H5N2+·C22H28O4PS·0.5C8H16N2O4, (II), have been determined. While (I) forms the expected hydrogen‐bonded chain utilizing the two imidazole N‐bound H atoms, in (II), the substituted hydrazine solvent mol­ecule inserts itself between the chains. Compound (I) exhibits a strong N—H⋯O hydrogen bond, with an N⋯O distance of 2.603 (2) Å. The hydrazine solvent molecule in (II) lies about a twofold axis and the N‐bound H atoms are involved in bifurcated hydrogen bonds with phosphate O atoms. A C‐bound H atom of the imidazolium cation is involved in a C—H⋯O inter­action with a carbonyl O atom of the hydrazine solvent mol­ecule.  相似文献   

18.
In the structure of the title compound, 2‐(3‐ammonio‐3‐carboxy­propanoyl)‐1‐anilinium sulfate dihydrate, C10H14N2O32+·SO42?·2H2O, the two amino groups are proton­ated. The mol­ecule has a trans planar zigzag carbon‐skeletal conformation elongated nearly in the benzene ring plane. The two amino and the carboxyl groups are located on the same side of the mol­ecule. The crystal structure is stabilized by intermolecular hydrogen bonds involving the water mol­ecules and the sulfate ion.  相似文献   

19.
The structure of the supramolecular complex calcium–tri­fluoro­methane­sulfonate–1,3‐di‐4‐pyridyl­urea–methanol (1/2/2/4), Ca2+·2CF3SO3·2C11H10N4O·4CH4O, is presented. The Ca2+ ion lies on an inversion centre and is octahedrally coordinated by four methanol mol­ecules and two tri­fluoro­methane­sulfonate counter‐ions. The molecular packing is dominated by hydrogen‐bonded sheets in the (110) plane which contain R(32) rings; in these rings, significant π–π interactions are observed between inversion‐related 1,3‐di‐4‐pyridyl­urea mol­ecules.  相似文献   

20.
The title complex, 2CH4N2S·C4H6O4, is a host–guest system. The asymmetric unit consists of one complete thio­urea mol­ecule and one‐half of a dimethyl oxalate mol­ecule lying on an inversion centre. The host thio­urea mol­ecules are connected to form zigzag chains by N—H⋯S hydrogen bonds. The guest dimethyl oxalate mol­ecules provide O‐atom acceptors for N—H⋯O hydrogen bonds, thus inter­connecting the chains of thio­urea mol­ecules to form completely connected sheets. The reduction in temperature from 300 to 100 K leaves the structure unchanged and still isostructural with that previously determined for the analogous thio­urea–diethyl oxalate (2/1) complex. It does, however, induce closer packing of the mol­ecules, general shrinkage of the unit cell and shortening of the hydrogen bonds, these last two to the extent of 1–2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号