首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of macrocyclic diazadi(and tri)thiacrown ethers containing two 5‐substituent‐8‐hydroxyquinoline side arms have been synthesized from the corresponding macrocyclic diazadi(and tri)thiacrown ethers. The crown ethers were obtained by reduction of the proper macrocyclic di(and tri)thiadiamides by borane‐tetrahydrofuran or by sodium borohydride‐boron trifluoride ethyl etherate‐tetrahydrofuran. The yields for the reduction of diamides by sodium borohydride‐boron trifluoride ethyl etherate‐tetrahydrofuran were higher than those by borane‐tetrahydrofuran. The following four methods were used to prepare macrocycles bearing two 8‐hydroxyquinoline side arms: (1) Mannich reaction with 8‐hydroxyquinoline; (2) Reductive animation with 8‐hydroxyquinoline‐2‐carboxaldehyde using sodium triacetoxyborohydride as the reducing agent; (3) Cyclization of N,N'‐bis(8‐hydroxyquinolin‐2‐ylmethyl)‐1,2‐bis(2‐aminoethoxy)ethane (38) with bis(α‐chloroamide) 5 ; and ( 4 ) A step‐by‐step process wherein macrocyclic trithiadiamide 11 was reduced by lithium aluminum hydride‐tetrahydrofuran to the cyclic monoamide 36 , which smoothly reacted with 5‐chloro‐8‐hydroxyquinoline to produce monosubstituted‐macrocyclic monoamide 39 .  相似文献   

2.
The complex formation reactions between iodine and DBzDA18C6, A15C5 and N‐phenylA15C5 have been studied spectrophotometrically in chloroform solution. In the case of DBzDA18C6 is the resulting 1:2 (ligand…I+)I3?, while, in the case of A15C5 and N‐phenylA15C5 a 2:2 molecular complex of [(ligand)2…I+]I3? type was formed. The spectrophotometric results indicate that gradual release of triiodide ion from its contact ion paired form in the molecular complex into the solution is the rate‐determining step of the reaction. The kinetic rate constants for the complexation reactions were determined at different temperatures, and activation parameters were calculated from Arrhenius and Eyring equations.  相似文献   

3.
Crown ethers and their supramolecular derivatives are well‐known chelators and scavengers for a variety of cations, most notably heavier alkali and alkaline‐earth ions. Although they are widely used in synthetic chemistry, available crystal structures of uncoordinated and solvent‐free crown ethers regularly suffer from disorder. In this study, we present the X‐ray crystal structure analysis of well‐ordered solvent‐free crystals of dibenzo‐21‐crown‐7 (systematic name: dibenzo[b ,k ]‐1,4,7,10,13,16,19‐heptaoxacycloheneicosa‐2,11‐diene, C22H28O7). Because of the quality of the crystal and diffraction data, we have chosen invarioms, in addition to standard independent spherical atoms, for modelling and briefly discuss the different refinement results. The electrostatic potential, which is directly deducible from the invariom model, and the Hirshfeld surface are analysed and complemented with interaction‐energy computations to characterize intermolecular contacts. The boat‐like molecules stack along the a axis and are arranged as dimers of chains, which assemble as rows to form a three‐dimensional structure. Dispersive C—H…H—C and C—H…π interactions dominate, but nonclassical hydrogen bonds are present and reflect the overall rather weak electrostatic influence. A fingerprint plot of the Hirshfeld surface summarizes and visualizes the intermolecular interactions. The insight gained into the crystal structure of dibenzo‐21‐crown‐7 not only demonstrates the power of invariom refinement, Hirshfeld surface analysis and interaction‐energy computation, but also hints at favourable conditions for crystallizing solvent‐free crown ethers.  相似文献   

4.
Substitution on the nitrogen atom, where necessary by high‐pressure SNAr reactions, of aza‐18‐crown‐6 ethers linked to heterocyclic aromatics has extended the number of potential host compounds for Ag+. The complexation of Ag+ by the new compounds has been evaluated by liquid membrane ion transport and ion extraction experiments. The nature of the binding sites of these new host compounds for Ag+ has been assessed, in DMF/D2O (4/1), by 13C nmr titration experiments with AgClO4.  相似文献   

5.
Mixtures of 4‐carboxypyridinium perchlorate or 4‐carboxypyridinium tetrafluoroborate and 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) in ethanol and water solution yielded the title supramolecular salts, C6H6NO2+·ClO4·C12H24O6·2H2O and C6H6NO2+·BF4·C12H24O6·2H2O. Based on their similar crystal symmetries, unit cells and supramolecular assemblies, the salts are essentially isostructural. The asymmetric unit in each structure includes one protonated isonicotinic acid cation and one crown ether molecule, which together give a [(C6H6NO2)(18‐crown‐6)]+ supramolecular cation. N—H...O hydrogen bonds between the protonated N atoms and a single O atom of each crown ether result in the 4‐carboxypyridinium cations `perching' on the 18‐crown‐6 molecules. Further hydrogen‐bonding interactions involving the supramolecular cation and both water molecules form a one‐dimensional zigzag chain that propagates along the crystallographic c direction. O—H...O or O—H...F hydrogen bonds between one of the water molecules and the anions fix the anion positions as pendant upon this chain, without further increasing the dimensionality of the supramolecular network.  相似文献   

6.
N‐acetyl‐4‐nitrotryptophan methyl ester (2), N‐acetyl‐5‐nitrotryptophan methyl ester (3), N‐acetyl‐6‐nitrotryptophan methyl ester (4) and N‐acetyl‐7‐nitrotryptophan methyl ester (5) were synthesized through a modified malonic ester reaction of the appropriate nitrogramine analogs followed by methylation with BF3‐methanol. Assignments of the 1H and 13C NMR chemical shifts were made using a combination of 1H–1H COSY, 1H–13C HETCOR and 1H–13C selective INEPT experiments. Copyright © 2008 Crown in the right of Canada. Published by John Wiley & Sons, Ltd  相似文献   

7.
Summary: A series of novel, thermo‐sensitive copolymers with different molar ratios of N‐isopropylacrylamide (NIPAM) and hydrophobic cis‐dibenzo‐18‐crown‐6‐diacrylamide (cis‐DBCAm) were prepared via free‐radical copolymerization. cis‐DBCAm with polymerizable end groups was successfully synthesized by reacting the corresponding amino crown ether with acryloyl chloride. The copolymers were characterized by FT‐IR and elemental analysis, and the thermo‐sensitivities of the copolymers were evaluated by measuring their lower critical solution temperatures (LCSTs) in the absence or presence of various metal ions. The results indicated that incorporation of cis‐DBCAm lowered LCSTs, and that the LCSTs of the copolymers decreased with the increase in cis‐DBCAm content in the copolymers. When the cavities of the crown ether units captured either K+ or Cs+ ions, the LCST of the respective copolymer–metal ion complex was further decreased, whereas the capture of Na+ or Li+ ions did not have a significant influence on the LCSTs of the copolymers.

Incorporation of cis‐DBCAm into PNIPAM resulted in a lower LCST. The LCST was decreased more when the cavities of the crown ether units captured K+ ions.  相似文献   


8.
9.
Novel dual molecular‐ and ion‐recognition responsive poly(N‐isopropylacrylamide‐co‐benzo‐12‐crown‐4‐acrylamide) (PNB12C4) linear copolymers with benzo‐12‐crown‐4 (B12C4) as both guest and host units are prepared. The copolymers exhibit highly selective sensitivities toward γ‐cyclodextrin (γ‐CD) and Na+. The presence of γ‐CD induces the lower critical solution temperature (LCST) of PNB12C4 copolymer to shift to a higher value due to the formation of 1:1 γ‐CD/B12C4 host‐guest inclusion complexes, while Na+ causes a negative shift in LCST due to the formation of 2:1 “sandwich” B12C4/Na+ host‐guest complexes. Regardless of the complexation order, when γ‐CD and Na+ coexist with PNB12C4, competitive complexation actions of B12C4 as both guest and host units toward γ‐CD and Na+ finally form equilibrium 2:2:1 γ‐CD/B12C4/Na+ composite complexes, and the final LCST values of PNB12C4 copolymer reach almost the same level. The results provide valuable guidance for designing and applying PNB12C4‐based smart materials in various applications.

  相似文献   


10.
An efficient rhodium‐catalyzed method for direct C? H functionalization at the C7 position of a wide range of indoles has been developed. Good to excellent yields of alkenylation products were observed with acrylates, styrenes, and vinyl phenyl sulfones, whereas the saturated alkylation products were obtained in good yield with α,β‐unsaturated ketones. Both the N‐pivaloyl directing group and the rhodium catalyst proved to be crucial for high regioselectivity and conversion.  相似文献   

11.
The title compound, C15H14N2O3, is the first example of a structurally determined tertiary amine with both N‐5‐nitro­furfuryl and N‐prop‐2‐ynyl moieties. The mol­ecule is not planar, i.e. the furan ring is inclined at an angle of 84.35 (4)° to the phenyl ring. The crystal structure is dominated by van der Waals forces. The terminal alkynyl group as the strongest C—H hydrogen‐bond donor is not involved in hydrogen‐bond formation.  相似文献   

12.
This research article is focused on the recognition interaction of a new host naphtho‐21‐crown‐7 and four secondary dialkylammonium salts. In acetone, they can form 1:1 host‐guest complexes which belong to slow‐exchange systems. We also found the differences of binding affinity and binding selectivity between the host and its complementary guest moieties, which could be ascribed to the aromatic π‐π stacking effect and the acidity increase of N‐methylene and ammonium hydrogens due to the increasing electron withdrawing ability from butyl to methoxyphenyl to phenyl to p‐cyanophenyl substituents in the recognition motif.  相似文献   

13.
In this work, we report the first application of ion‐imprinted technology via precipitation polymerization for simple and practical determination of rubidium ions. The rubidium‐ion‐imprinted polymer nanoparticles were prepared using dibenzo‐21‐crown‐7 as a selective ligand, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross linker, and 2,2′‐azobisisobutyronitrile as radical initiator. The resulting powder material was characterized using scanning electron microscopy, which showed colloidal nanoparticles of 100–200 nm in diameter and slightly irregular in shape. The maximum adsorption capacity of the ion imprinted particles was 63.36 μmol/g. The experimental conditions such as nature and concentration of eluent, pH, adsorption and desorption times, weight of the polymer material, aqueous phase and desorption agent volumes were also studied. Finally, selectivity of the prepared IIP particles toward rubidium ion was investigated in the presence of some foreign metal ions.  相似文献   

14.
The crystal structure of 21α‐fluoro‐7‐norvouacapane‐17β,21α‐lactone, C20H25FO3, a new synthetic derivative of the diterpenoid 6α,7β‐di­hydroxy­vouacapan‐17β‐oic acid isolated from Pterodon polygalaeflorus Benth fruits, is described.  相似文献   

15.
16.
The title crown ether, C28H40O8, crystallizes in an ortho­rhombic cell with the full mol­ecule generated from crystallographic inversion symmetry. The ring consists of 30 atoms which could potentially influence the size of the ring cavity and the conformational flexibility. Unusual C—O—C—C and O—C—C—O torsion‐angle geometries, deviating by as much as 30° from their ideal values, have been observed.  相似文献   

17.
The compounds N′‐benzylidene‐N‐methylpyrazine‐2‐carbohydrazide, C13H12N4O, (IIa), N′‐(2‐methoxybenzylidene)‐N‐methylpyrazine‐2‐carbohydrazide, C14H14N4O2, (IIb), N′‐(4‐cyanobenzylidene)‐N‐methylpyrazine‐2‐carbohydrazide dihydrate, C14H11N5O·2H2O, (IIc), N‐methyl‐N′‐(2‐nitrobenzylidene)pyrazine‐2‐carbohydrazide, C13H11N5O3, (IId), and N‐methyl‐N′‐(4‐nitrobenzylidene)pyrazine‐2‐carbohydrazide, C13H11N5O3, (IIe), have dihedral angles between the pyrazine rings and the benzene rings in the range 55–78°. These methylated pyrazine‐2‐carbohydrazides have supramolecular structures which are formed by weak C—H...O/N hydrogen bonds, with the exception of (IIc) which is hydrated. There are π–π stacking interactions in all five compounds. Three of these structures are compared with their nonmethylated counterparts, which have dihedral angles between the pyrazine rings and the benzene rings in the range 0–6°.  相似文献   

18.
The reaction of 2,3,4‐tri‐O‐acetyl‐β‐D‐xylopyranosyl isothiocyanate ( 1 ) and 2‐amino‐4‐arylthiazoles ( 2 ) gave xylosylthioureas 3 . These thiourea derivatives reacted with alkyl/aryl amine in the presence of HgCl2 to give a new series of N‐alkyl/aryl‐N″‐(4‐arylthiazol‐2‐yl)‐N″‐xylosyl guanidines 4 . Some of the synthesized guanidines were screened for their biological activity. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:688–694, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20379  相似文献   

19.
A series of novel N‐tert‐butyl‐N′‐thio[O‐(1‐methylthioethylimino)‐N″‐methylcarbamate]‐N,N′‐diacylhydrazines were synthesized by the reaction of chlorosulfenyl[O‐(1‐methylthioethylimino)‐N‐methylcarbamate] with N‐tert‐butyl‐N,N′‐diacylhydrazine in the presence of sodium hydride. The reaction of sulfur dichloride with O‐(1‐methylthioethylimino)‐N‐methylcarbamate (Methomyl) in the presence of pyridine to yield chlorosulfenyl[O‐(1‐methylthioethylimino)‐N‐methylcarbamate] was reported for the first time. X‐ray single crystal diffraction of N‐tert‐butyl‐N′‐thio[O‐(1‐methylthioethylimino)‐N″‐methylcarbamate]‐N,N′‐dibenzoylhydrazine demonstrated that the parent compounds N‐tert‐butyl‐N,N′‐dibenzoylhydrazine and O‐(1‐methylthioethylimino)‐N‐methylcarbamate were combined by N S N band to give the product. Their larvicidal activities against Oriental armyworm and Aphis laburni were evaluated. All of them exhibited excellent larvicidal activities against Oriental armyworm, with some of them showing higher larvicidal activities than the parent diacylhydrazines. Toxicity assays indicated that the products show knockdown activity for O‐(1‐methylthioethylimino)‐N‐methylcarbamate at higher concentration and insect growth regulators' activities of diacylhydrazines at lower concentrations. At the same time, the products possess insecticidal activities against the aphids. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:631–636, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20360  相似文献   

20.
The title compound, 4,7‐dioxa‐10‐thia‐1,12,13‐tri­aza­bi­cyclo­[9.3.0]­tetra­deca‐11,13‐diene, C8H13N3O2S, contains an 11‐membered ring, which appears in a chair conformation and has approximate mirror symmetry. It may be used for the complexation of metal atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号