首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two isomeric products (C8H10N2O4S) of the rearrangement of 3‐methane­sulfonyl‐N‐methyl‐N‐nitro­aniline have been investigated, viz. 3‐methane­sulfonyl‐N‐methyl‐2‐nitro­aniline, which was the main product of the rearrangement, and 5‐methane­sulfonyl‐N‐methyl‐2‐nitro­aniline. In both mol­ecules, the aromatic rings are appreciably deformed towards ortho‐quinonoidal geometry by electronic and steric interactions. The crystal structure is stabilized, in both cases, by weak C—H⋯O hydrogen bonds.  相似文献   

2.
The title compound, C15H14N2O3, is the first example of a structurally determined tertiary amine with both N‐5‐nitro­furfuryl and N‐prop‐2‐ynyl moieties. The mol­ecule is not planar, i.e. the furan ring is inclined at an angle of 84.35 (4)° to the phenyl ring. The crystal structure is dominated by van der Waals forces. The terminal alkynyl group as the strongest C—H hydrogen‐bond donor is not involved in hydrogen‐bond formation.  相似文献   

3.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

4.
In the crystal structure of 2‐acetamido‐N‐benz­yl‐2‐(methoxy­amino)acetamide (3L), C12H17N3O3, the 2‐acetyl­amino­acetamide moiety has a linearly extended conformation, with an inter­planar angle between the two amide groups of 157.3 (1)°. In 2‐acetamido‐N‐benz­yl‐2‐[meth­oxy(meth­yl)­amino]­acetamide (3N), C13H19N3O3, the planes of the two amide groups inter­sect at an angle of 126.4 (4)°, resulting in a chain that is slightly more bent. The replacement of the methoxy­amino H atom of 3L with a methyl group to form 3N and concomitant loss of hydrogen bonding results in some positional/thermal disorder in the meth­oxy­(methyl)­amino group. In both structures, in addition to classical N—H⋯O hydrogen bonds, there are also weak non‐standard C—H⋯O hydrogen bonds. The hydrogen bonds and packing inter­actions result in planar hydro­philic and hydro­phobic areas perpendicular to the c axis in 3L and parallel to the ab plane in the N‐meth­yl derivative. Stereochemical comparisons with phenytoin have identified two O atoms and a phenyl group as mol­ecular features likely to be responsible for the anticon­vulsant activities of these compounds.  相似文献   

5.
The crystal structures of the two title thio­benz­amides, C19H21NS, (I), and C20H23NOS, (II), were determined to investigate the relationship between the photoreactivity in solid state and the structure. Their geometry was confirmed to be the E isomer in each case.  相似文献   

6.
Two isoindolin‐1‐one derivatives, (Z)‐3‐benzyl­idene‐N‐phenyl­isoindolin‐1‐one, C21H15NO, (II), and (Z)‐3‐benzyl­idene‐N‐(4‐methoxy­phenyl)­isoindolin‐1‐one, C22H17NO2, (III), were synthesized by the palladium‐catalysed heteroannulation. The mol­ecules of both compounds have a Z configuration. The interplanar angles between the five‐ and six‐membered rings of the isoindolinone moiety in (II) and (III) are 1.66 (11) and 2.26 (7)°, respectively. The phenyl rings at the N‐position in (II) and (III) are twisted out of the C4N ring plane by 62.77 (11) and 67.10 (7)°, respectively. The substitutions at the N and C‐3 positions of the isoindolinone system have little influence on the molecular dimensions of the resulting compounds.  相似文献   

7.
In both the title structures, O‐ethyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thio­carbam­ate, C17H25NO10S, and O‐methyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thiocar­bam­ate, C16H23NO10S, the hexo­pyran­osyl ring adopts the 4C1 conformation. All the ring substituents are in equatorial positions. The acetoxy­methyl group is in a gauchegauche conformation. The S atom is in a synperi­planar conformation, while the C—N—C—O linkage is antiperiplanar. N—H?O intermolecular hydrogen bonds link the mol­ecules into infinite chains and these are connected by C—H?O interactions.  相似文献   

8.
The geometries of the thia­zole ring and the nitr­amino groups in N‐(3H‐thia­zol‐2‐yl­idene)­nitr­amine, C3H3N3O2S, (I), and N‐­methyl‐N‐(thia­zol‐2‐yl)­nitr­amine, C4H5N3O2S, (II), are very similar. The nitr­amine group in (II) is planar and twisted along the C—N bond with respect to the thia­zole ring. In both structures, the asymmetric unit includes two practically equal mol­ecules. In (I), the mol­ecules are arranged in layers connected to each other by N—H⋯N and much weaker C—H⋯O hydrogen bonds. In the crystal structure of (II), the mol­ecules are arranged in layers bound to each other by both weak C—H⋯O hydrogen bonds and S⋯O dipolar interactions.  相似文献   

9.
The title compounds, {4,4′‐di­bromo‐2,2′‐[1,3‐propane­diyl­bis(nitrilo­methyl­idyne‐N)]­diphenolato‐O,O′}nickel(II), [Ni(C17­H14­Br2­N2O2)], and {4,4′‐di­chloro‐2,2′‐[1,3‐pro­pane­diyl­bis­(ni­trilo­methyl­idyne‐N)]­di­phen­ol­ato‐O,O′}­copper(II), [Cu­(C17­H14­Cl2­N2O2)], lie on crystallographic twofold axes. In both structures, the metal coordination sphere is a tetrahedrally distorted square plane formed by the four‐coordinate N2O2 donor set of the Schiff base imine–phenol ligands. In the Ni compound, the Ni—O and Ni—N distances are 1.908 (3) and 1.959 (4) Å, respectively, while in the Cu compound, the Cu—O and Cu—N distances are 1.907 (2) and 1.960 (2) Å, respectively. The two Schiff base moieties, which themselves are nearly planar, are inclined at an angle of 29.26 (7)° for the Ni compound and 29.26 (5)° for the Cu compound.  相似文献   

10.
The crystal structure of the title compound, C18H24N2O11, a GalNAc mimic containing an α‐gly­cosyl­oxy­succin­imide linkage, has been determined. The pyran­ose ring geometry is an almost perfect 4C1 chair. The torsion angle of the exocyclic hydroxy­methyl group is shown to be gauchetrans with respect to O1 and C4, respectively.  相似文献   

11.
In the title compounds, C17H15N3 and C20H22N4, the methyl derivative crystallizes with two mol­ecules in the asymmetric unit, while the N,N‐diethyl­amino derivative crystallizes with one mol­ecule per asymmetric unit. The bi­phenyl twist angle for both mol­ecular structures is approximately 45°. The molecular packing is stabilized by N—H?N hydrogen bonds.  相似文献   

12.
The two title complexes, catena‐poly[[{2,2′‐[1,3‐propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]‐μ‐azido], [Co(C17H16N2O2)(N3)]n, (I), and catena‐poly[[{2,2′‐[1,3‐propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]‐μ‐thio­cyanato], [Co(C17H16N2O2)(NCS)]n, (II), are isomorphous polynuclear cobalt(III) compounds. In both structures, the CoIII atom is six‐coordinated in an octa­hedral configuration by two N atoms and two O atoms of one Schiff base, and two terminal N or S atoms from two bridging ligands. The [N,N′‐bis­(salicyl­idene)propane‐1,3‐diaminato]cobalt(III) moieties are linked by the bridging ligands, viz. azide in (I) and thio­cyanate in (II), giving zigzag polymeric chains with backbones of the type [–Co—N—N—N—Co]n in (I) or [–Co—N—C—S—Co]n in (II) running along the c axis.  相似文献   

13.
The solid‐state structure of the title compound, C19H15NS2, is unusual among substituted thiophene/pyrrole derivatives in that the molecular packing is dominated by π–π interactions between the benzyl substituents. This may be due to the large torsion angles observed between adjacent heterocycles. Torsion angles between adjacent rings in poly­pyrrole and poly­thio­phene conducting polymers are related to conjugation length and the conductivity properties of the polymer materials. The title compound crystallizes in space group P21/c with two mol­ecules in the asymmetric unit, both of which exhibit disorder in one of their thio­phene rings.  相似文献   

14.
In the crystal structure of the title compound, 4‐cyano‐N‐(4‐methoxy­benzyl­idene)­phenyl­amine N‐oxide, C15H12N2O2, the 4‐methoxy­phenyl is approximately coplanar with the nitrone moiety but significantly rotated with respect to the 4‐cyano­phenyl moiety. The extent of this rotation is significantly different for the two crystallographically independent mol­ecules of the asymmetric unit [dihedral angles of 19.4 (1) and 26.5 (1)°]. The geometry about the C=N bond is Z. The two mol­ecules are related to one another by a pseudo inversion centre.  相似文献   

15.
Molecules of the title compound (alternative name: p‐nitro­benz­aldehyde phenyl­hydrazone), C13H11N3O2, adopt an E configuration about the azomethine C=N double bond. Molecules are approximately planar and the dihedral angle between the planes of the phenyl rings is 11.62 (9)°. Hydro­gen bonding links mol­ecules related by 42 screw axes to form helices with a pitch of 7.7186 (8) Å.  相似文献   

16.
The preparation, characterization, and molecular and crystal structures of the title compound [IUPAC name: 2‐nitro­phenyl 2‐methyl‐2‐(para‐toluene­sulfonyl­amino)­propanoate], C17H18­N2O6S, are reported. The phenyl group is almost perpendicular to the plane of the adjacent ester moiety. One O atom of the nitro group is wedged between the two ester O atoms. The implications of this peculiar conformation for the chemistry of ortho‐nitro­phenyl esters in peptide synthesis are discussed.  相似文献   

17.
4‐[N‐(2‐Chloro‐6‐methyl­phen­yl)ureido]pyridinium chloride, C13H13ClN3O+·Cl (CI‐953 hydro­chloride), crystallizes with Z′ = 2 in P. In both mol­ecules, the methyl groups and Cl atoms on the benzene rings are disordered. The benzene rings of mol­ecules A and B adopt two conformations, differing by a rotation of 180° about the C—N bond to the ureido group, in an approximate 1:1 ratio. This disorder is further enhanced by the rotation of the methyl groups in both adopted positions. The pyridine and benzene rings inter­sect at angles of 102.1 (1) and 111.3 (1)° for A and B, respectively. Hydrogen bonding is mediated by Cl anions, resulting in indirect connectivity between the mol­ecules. Superposition of the mol­ecular structure, after 180° rotation about an amide bond, with that of phenytoin shows that the chemically different mol­ecules possess stereochemical features in common, which may explain their common activities.  相似文献   

18.
The title compound, C12H12N2O3S, is a strict pyridine analogue of nimesulide, a selective inhibitor of cyclooxygen­ase‐2. The structure is characterized by a pyridinium ring with a deprotonated sulfon­amide group. An intermolecular charge‐assisted hydrogen bond between these two groups is observed within the crystal packing, linking the mol­ecules into an infinite chain running along the b‐axis direction.  相似文献   

19.
The crystal structure of N‐methyl‐4‐piperidyl 2,4‐di­nitro­benzoate, C13H15N3O6, (I), at 130 (2) K reveals that, in the solid state, the mol­ecule exists in the equatorial conformation, (Ieq). Thus, the through‐bond interaction present in the axial conformation, (Iax), is not strong enough to overcome the syn–diaxial interactions between the axial methyl substituent and the axial H atoms on the two piperidyl ring C atoms either side of the ester‐linked ring C atom. The carboxyl­ate group in (I) is orthogonal to the aromatic ring, in contrast with other 2,4‐di­nitro­benzoates, which are coplanar. The piperidyl–ester C—O bond distance is 1.467 (3) Å, which is actually shorter than other equatorial cyclo­hexyl–ester C—O distances. This shorter piperidyl–ester C—O bond distance is due to the reduced electron demand of the orthogonal ester group.  相似文献   

20.
The title compound, (C7H10N)[Ni(C3S5)2] or (Etpy)[Ni(dmit)2] (where Etpy is the N‐ethyl­pyridinium cation, C7H10N+, and dmit is the 2‐thio­xo‐1,3‐di­thiole‐4,5‐di­thiol­ate dianion, C3S52−), crystallizes in the P space group with two mol­ecules in the asymmetric unit. The [Ni(dmit)2] monoanion has a planar D2h conformation, with the central Ni atom and the four coordinated S atoms forming an NiS4 square plane. The six‐membered ring of the Etpy cation also shows good planarity, as expected. There are two main types of disorder in the two Etpy cations. Several short intermolecular interactions are present, such as S⋯S, Ni⋯S and Ni⋯Ni, which help to form the enhanced three‐dimensional structure of the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号