首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The three pyran structures 6‐methylamino‐5‐nitro‐2,4‐diphenyl‐4H‐pyran‐3‐carbonitrile, C19H15N3O3, (I), 4‐(3‐fluorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14FN3O3, (II), and 4‐(4‐chlorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14ClN3O3, (III), differ in the nature of the aryl group at the 4‐position. The heterocyclic ring in all three structures adopts a flattened boat conformation. The dihedral angle between the pseudo‐axial phenyl substituent and the flat part of the pyran ring is 89.97 (1)° in (I), 80.11 (1)° in (II) and 87.77 (1)° in (III). In all three crystal structures, a strong intramolecular N—H...O hydrogen bond links the flat conjugated H—N—C=C—N—O fragment into a six‐membered ring. In (II), molecules are linked into dimeric aggregates by N—H... O(nitro) hydrogen bonds, generating an R22(12) graph‐set motif. In (III), intermolecular N—H...N and C—H...N hydrogen bonds link the molecules into a linear chain pattern generating C(8) and C(9) graph‐set motifs, respectively.  相似文献   

2.
Molecules of the title compounds N2‐(benzoyl­oxy)­benz­ami­dine, C14H12N2O2, (I), N2‐(2‐hydroxy­benzoyl­oxy)­benz­ami­dine, C14H12N2O3, (II), and N2‐benzoyloxy‐2‐hydroxybenzamidine, C14H12N2O3, (III), all have extended chain conformations, with the aryl groups remote from one another. In (I), the mol­ecules are linked into chains by a single N—H⋯N hydrogen bond [H⋯N = 2.15 Å, N⋯N = 3.029 (2) Å and N—H⋯N = 153°] and these chains are linked into sheets by means of aromatic π–π stacking interactions. There is one intramolecular O—H⋯O hydrogen bond in (II), and a combination of one three‐centre N—H⋯(N,O) hydrogen bond [H⋯N = 2.46 Å, H⋯O = 2.31 Å, N⋯N = 3.190 (2) Å, N⋯O = 3.146 (2) Å, N—H⋯N = 138° and N—H⋯O = 154°] and one two‐centre C—H⋯O hydrogen bond [H⋯O = 2.46 Å, C⋯O = 3.405 (2) Å and C—H⋯O = 173°] links the mol­ecules into sheets. In (III), an intramolecular O—H⋯N hydrogen bond and two N—H⋯O hydrogen bonds [H⋯O = 2.26 and 2.10 Å, N⋯O = 2.975 (2) and 2.954 (2) Å, and N—H⋯O = 138 and 163°] link the molecules into sheets.  相似文献   

3.
In the selenium‐containing heterocyclic title compound {systematic name: N‐[5‐(morpholin‐4‐yl)‐3H‐1,2,4‐diselenazol‐3‐ylidene]benzamide}, C13H13N3O2Se2, the five‐membered 1,2,4‐diselenazole ring and the amide group form a planar unit, but the phenyl ring plane is twisted by 22.12 (19)° relative to this plane. The five consecutive N—C bond lengths are all of similar lengths [1.316 (6)–1.358 (6) Å], indicating substantial delocalization along these bonds. The Se...O distance of 2.302 (3) Å, combined with a longer than usual amide C=O bond of 2.252 (5) Å, suggest a significant interaction between the amide O atom and its adjacent Se atom. An analysis of related structures containing an Se—Se...X unit (X = Se, S, O) shows a strong correlation between the Se—Se bond length and the strength of the Se...X interaction. When X = O, the strength of the Se...O interaction also correlates with the carbonyl C=O bond length. Weak intermolecular Se...Se, Se...O, C—H...O, C—H...π and π–π interactions each serve to link the molecules into ribbons or chains, with the C—H...O motif being a double helix, while the combination of all interactions generates the overall three‐dimensional supramolecular framework.  相似文献   

4.
The title complexes, [Pt(C4H7NO)2I2], (I), and [Pt(C4H9NO)2I2], (II), possess similar square‐planar coordination geometries with modest distortions from ideality. For (I), the cisL—Pt—L angles are in the range 87.0 (4)–94.2 (3)°, while the trans angles are 174.4 (3) and 176.4 (3)°. For (II), cisL—Pt—L are 86.1 (8)–94.2 (6)° and transL—Pt—L are 174.4 (6) and 177.4 (5)°. One 3,6‐di­hydro‐2H‐1,2‐oxazine ligand in (I) is rotated so that the N—O bond is out of the square plane by approximately 70°, while the N—C bond is only ca 20° out of the plane. The other oxazine ligand is rotated so that the N—C bond is about 80° out of the plane, while the N—O bond is out of the plane by approximately 24°. In (II), the 3,4,5,6‐tetra­hydro‐2H‐1,2‐oxazine ligands are also positioned with one having the N—O bond further out of the plane and the other having the N—C bond positioned in that fashion. Both ligands, however, are rotated approximately 90° compared with their positions in (I). In both complexes, this results in an unsymmetrical distortion of the I—Pt—N bond angles in which one is expanded and the other contracted. These features are compared to those of reported cis‐di­amine­di­iodo­platinum(II) complexes.  相似文献   

5.
In N,N,N′,N′‐tetraethyl‐N′′‐(4‐fluorobenzoyl)phosphoric triamide, C15H25FN3O2P, (I), and N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis(4‐methylpiperidin‐1‐yl)phosphoric triamide, C19H28F2N3O2P, (II), the C—N—C angle at each tertiary N atom is significantly smaller than the two P—N—C angles. For the other new structure, N,N′‐dicyclohexyl‐N′′‐(2‐fluorobenzoyl)‐N,N′‐dimethylphosphoric triamide, C21H33FN3O2P, (III), one C—N—C angle [117.08 (12)°] has a greater value than the related P—N—C angle [115.59 (9)°] at the same N atom. Furthermore, for most of the analogous structures with a [C(=O)NH]P(=O)[N(C)(C)]2 skeleton deposited in the Cambridge Structural Database [CSD; Allen (2002). Acta Cryst. B 58 , 380–388], the C—N—C angle is significantly smaller than the two P—N—C angles; exceptions were found for four structures with the N‐methylcyclohexylamide substituent, similar to (III), one structure with the seven‐membered cyclic amide azepan‐1‐yl substituent and one structure with an N‐methylbenzylamide substituent. The asymmetric units of (I), (II) and (III) contain one molecule, and in the crystal structures, adjacent molecules are linked via pairs of N—H...O=P hydrogen bonds to form dimers.  相似文献   

6.
Molecules of 2‐amino‐4,6‐di­methoxy­pyrimidine, C6H9N3O2, (I), are linked by two N—H?N hydrogen bonds [H?N 2.23 and 2.50 Å, N?N 3.106 (2) and 3.261 (2) Å, and N—H?N 171 and 145°] into a chain of fused rings, where alternate rings are generated by centres of inversion and twofold rotation axes. Adjacent chains are linked by aromatic π–π‐stacking interactions to form a three‐dimensional framework. In 2‐­benzylamino‐4,6‐bis(benzyloxy)pyrimidine, C25H23N3O2, (II), the mol­ecules are linked into centrosymmetric R(8) dimers by paired N—H?N hydrogen bonds [H?N 2.13 Å, N?N 2.997 (2) Å and N—H?N 170°]. Molecules of 2‐amino‐4,6‐bis(N‐pyrrolidino)­pyrimidine, C12H19N5, (III), are linked by two N—H?N hydrogen bonds [H?N 2.34 and 2.38 Å, N?N 3.186 (2) and 3.254 (2) Å, and N—H?N 163 and 170°] into a chain of fused rings similar to that in (I).  相似文献   

7.
The title isomers, namely 3‐chloro‐N‐[1‐(1H‐pyrrol‐2‐yl)ethylidene]aniline, (I), and 4‐chloro‐N‐[1‐(1H‐pyrrol‐2‐yl)ethylidene]aniline, (II), both C12H11ClN2, differ in the position of the chlorine substitution. Both compounds have the basic iminopyrrole structure, which shows a planar backbone with similar features. The dihedral angle formed by the planes of the pyrrole and benzene rings is 75.65 (7)° for (I) and 86.56 (8)° for (II). The H atom bound to the pyrrole N atom is positionally disordered and partial protonation occurs at the imino N atom in (I), while this phenomenon is absent from the structure of (II). Packing interactions for both compounds include intermolecular N—H...N hydrogen bonds and C—H...π interactions, forming centrosymmetric dimers for both (I) and (II).  相似文献   

8.
The title compound {systematic name: 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐[6‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)hex‐1‐ynyl]pyrimidin‐2(1H)‐one}, C24H28N6O4, shows two conformations in the crystalline state, viz. (I‐1) and (I‐2). The pyrimidine groups and side chains of the two conformers are almost superimposable, while the greatest differences between them are observed for the sugar groups. The N‐glycosylic bonds of both conformers adopt similar anti conformations, with χ = −168.02 (12)° for conformer (I‐1) and χ = −159.08 (12)° for conformer (I‐2). The sugar residue of (I‐1) shows an N‐type (C3′‐endo) conformation, with P = 33.1 (2)° and τm = 29.5 (1)°, while the conformation of the 2′‐deoxyribofuranosyl group of (I‐2) is S‐type (C3′‐exo), with P = 204.5 (2)° and τm = 33.8 (1)°. Both conformers participate in hydrogen‐bond formation and exhibit identical patterns resulting in three‐dimensional networks. Intermolecular hydrogen bonds are formed with neighbouring molecules of different and identical conformations (N—H...N, N—H... O, O—H...N and O—H...O).  相似文献   

9.
Two novel hypervalent selenium(IV) compounds stabilized by intramolecular interactions, namely 6‐phenyl‐6,7‐dihydro‐5H‐2,3‐dioxa‐2aλ4‐selenacyclopenta[hi]indene, C14H12O2Se, 14 , and 5‐phenyl‐5,6‐dihydro‐4H‐benzo[c][1,2]oxaselenole‐7‐carbaldehyde, C14H12OSe2, 15 , have been synthesized by the reaction of 2‐chloro‐1‐formyl‐3‐(hydroxymethylene)cyclohexene with in‐situ‐generated disodium diselenide (Na2Se2). The title compounds were characterized by FT–IR spectroscopy, ESI–MS, and single‐crystal X‐ray diffraction studies. For 14 , there is whole‐molecule disorder, with occupancies of 0.605 (10) and 0.395 (10), a double bond between C and Se, and the five‐membered selenopentalene rings are coplanar. The packing is stabilized by π–π stacking interactions involving one of the five‐membered Se/C/C/C/O rings [centroid–centroid (CgCg) distance = 3.6472 (18) Å and slippage = 1.361 Å], as well as C—H…π interactions involving a C—H group and the phenyl ring. In addition, there are bifurcated C—H…Se,O interactions which link the molecules into ribbons in the c direction. For 15 , the C—Se bond lengths are longer than those of 14 . The two five‐membered rings are coplanar. There are no π–π or C—H…π interactions; however, molecules are linked by C—H…O interactions into centrosymmetric dimers, with graph‐set notation R22(16).  相似文献   

10.
The geometries of the thia­zole ring and the nitr­amino groups in N‐(3H‐thia­zol‐2‐yl­idene)­nitr­amine, C3H3N3O2S, (I), and N‐­methyl‐N‐(thia­zol‐2‐yl)­nitr­amine, C4H5N3O2S, (II), are very similar. The nitr­amine group in (II) is planar and twisted along the C—N bond with respect to the thia­zole ring. In both structures, the asymmetric unit includes two practically equal mol­ecules. In (I), the mol­ecules are arranged in layers connected to each other by N—H⋯N and much weaker C—H⋯O hydrogen bonds. In the crystal structure of (II), the mol­ecules are arranged in layers bound to each other by both weak C—H⋯O hydrogen bonds and S⋯O dipolar interactions.  相似文献   

11.
Two novel cocrystals of the N(7)—H tautomeric form of N6‐benzoyladenine (BA), namely N6‐benzoyladenine–3‐hydroxypyridinium‐2‐carboxylate (3HPA) (1/1), C12H9N5O·C6H5NO3, (I), and N6‐benzoyladenine–DL‐tartaric acid (TA) (1/1), C12H9N5O·C4H6O6, (II), are reported. In both cocrystals, the N6‐benzoyladenine molecule exists as the N(7)—H tautomer, and this tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the benzoyl C=O group and the N(7)—H hydrogen on the Hoogsteen site of the purine ring, forming an S(7) motif. The dihedral angle between the adenine and phenyl planes is 0.94 (8)° in (I) and 9.77 (8)° in (II). In (I), the Watson–Crick face of BA (N6—H and N1; purine numbering) interacts with the carboxylate and phenol groups of 3HPA through N—H...O and O—H...N hydrogen bonds, generating a ring‐motif heterosynthon [graph set R22(6)]. However, in (II), the Hoogsteen face of BA (benzoyl O atom and N7; purine numbering) interacts with TA (hydroxy and carbonyl O atoms) through N—H...O and O—H...O hydrogen bonds, generating a different heterosynthon [graph set R22(4)]. Both crystal structures are further stabilized by π–π stacking interactions.  相似文献   

12.
The title compounds, (E)‐2‐[(2‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (I), (E)‐2‐[(3‐bromo­phenyl)­imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (II), and (E)‐2‐[(4‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (III), adopt the phenol–imine tautomeric form. In all three structures, there are strong intra­molecular O—H⋯N hydrogen bonds. Compound (I) has strong inter­molecular hydrogen bonds, while compound (III) has weak inter­molecular hydrogen bonds. In addition to these inter­molecular inter­actions, C—H⋯π inter­actions in (I) and (III), and π–π inter­actions in (I), play roles in the crystal packing. The dihedral angles between the aromatic rings are 15.34 (12), 6.1 (3) and 39.2 (14)° for (I), (II) and (III), respectively.  相似文献   

13.
In the benzene and phenol solvates of (S)‐4‐{3‐[2‐(dimethylamino)ethyl]‐1H‐indol‐5‐ylmethyl}oxazolidin‐2‐one, viz. C16H21N3O2·C6H6, (I), and C16H21N3O2·C6H5OH, (II), the host molecule has three linked residues, namely a planar indole ring system, an ethylamine side chain and an oxazolidinone system. It has comparable features to that of sumatriptan, although the side‐chain orientations of (I) and (II) differ from those of sumatriptan. Both (I) and (II) have host–guest‐type structures. The host molecule in (I) and (II) has an L‐shaped form, with the oxazolidinone ring occupying the base and the remainder of the molecule forming the upright section. In (I), each benzene guest molecule is surrounded by four host molecules, and these molecules are linked by a combination of N—H...N, N—H...O and C—H...O hydrogen bonds into chains of edge‐fused R44(33) rings. In (II), two independent molecules are present in the asymmetric unit, with similar conformations. The heterocyclic components are connected through N—H...N, N—H...O and C—H...O interactions to form chains of edge‐fused R64(38) rings, from which the phenol guest molecules are pendent, linked by O—H...O hydrogen bonds. The structures are further stabilized by extensive C—H...π interactions.  相似文献   

14.
The molecules of 3‐amino‐4‐anilino‐1H‐isochromen‐1‐one, C15H12N2O2, (I), and 3‐amino‐4‐[methyl(phenyl)amino]‐1H‐isochromen‐1‐one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, where R = H in (I) and R = Me in (II), almost orthogonal to the adjacent heterocyclic ring. The molecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N—H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three‐centre N—H...(O)2 hydrogen bond, one two‐centre C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds.  相似文献   

15.
The molecular dimensions of both 2‐amino‐6‐(N‐methylanilino)pyrimidin‐4(3H)‐one, C11H12N4O, (I), and 2‐amino‐6‐(N‐methylanilino)‐5‐nitropyrimidin‐4(3H)‐one, C11H11N5O3, (II), are consistent with considerable polarization of the molecular–electronic structures. The molecules of (I) are linked into a three‐dimensional framework by a combination of one N—H...N hydrogen bond, two independent N—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The molecules of (II) are linked into ribbons containing three types of edge‐fused ring by the combination of two independent three‐centre N—H...(O)2 hydrogen bonds.  相似文献   

16.
The X‐ray crystal structures of P,P′‐imino­bis­(di­phenyl­seleno­phosphine) tetra­hydro­furan solvate, C24H21NP2Se2·C4H8O, (I), and bis­(tetra­hydro­furan) solvate, C24H21NP2Se2·2C4H8O, (II), have been determined; (I) has twofold crystallographic symmetry. In each compound, the O atom of one mol­ecule of tetra­hydro­furan is hydrogen bonded to the amide‐H atom of HN(SePPh2)2. The conformation of the Se—P—N—P—Se chains in (I), (II), and the crystal structure of the unsolvated HN(SePPh2)2 are different.  相似文献   

17.
The crystal structures of two para‐substituted aryl derivatives of pyridine‐2‐carboxamide, namely N‐(4‐fluorophenyl)pyridine‐2‐carboxamide, C12H9FN2O, (I), and N‐(4‐nitrophenyl)pyridine‐2‐carboxamide, C12H9N3O3, (II), have been studied. Compound (I) exhibits unconventional aryl–carbonyl C—H...O and pyridine–fluorine C—H...F hydrogen bonding in two dimensions and well defined π‐stacking involving pyridine rings in the third dimension. The conformation of (II) is more nearly planar than that of (I) and the intermolecular interactions comprise one‐dimensional aryl–carbonyl C—H...O hydrogen bonds leading to a stepped or staircase‐like progression of loosely π‐stacked molecules. The close‐packed layers of planar π‐stacked molecules are related by inversion symmetry. Two alternating interplanar separations of 3.439 (1) and 3.476 (1) Å are observed in the crystal lattice and are consistent with a repetitive packing sequence, ABABAB…, for the π‐stacked inversion pairs of (II).  相似文献   

18.
The three title isomers, 4‐, (I), 3‐, (II), and 2‐fluoro‐N′‐(4‐pyridyl)benzamide, (III), all C12H9FN2O, crystallize in the P21/c space group (No. 14) with similar unit‐cell parameters and are isomorphous and isostructural at the primary hydrogen‐bonding level. An intramolecular C—H...O=C interaction is present in all three isomers [C...O = 2.8681 (17)–2.884 (2) Å and C—H...O117–118°], with an additional N—H...F [N...F = 2.7544 (15) Å] interaction in (III). Intermolecular amide–pyridine N—H...N hydrogen bonds link molecules into one‐dimensional zigzag chains [graph set C(6)] along the [010] direction as the primary hydrogen bond [N...N = 3.022 (2), 3.049 (2) and 3.0213 (17) Å]. These are augmented in (I) by C—H...π(arene) and cyclic C—F...π(arene) contacts about inversion centres, in (II) by C—F...F—C interactions [C...F = 3.037 (2) Å] and weaker C—H...π(arene)/C—H...F contacts, and in (III) by C—H...π(arene) and C=O...O=C interactions, linking the alternating chains into two‐dimensional sheets. Typical amide N—H...O=C hydrogen bonds [as C(4) chains] are not present [N...O = 3.438 (2) Å in (I), 3.562 (2) Å in (II) and 3.7854 (16) Å in (III)]; the C=O group is effectively shielded and only participates in weaker interactions/contacts. This series is unusual as the three isomers are isomorphous (having similar unit‐cell parameters, packing and alignment), but they differ in their interactions and contacts at the secondary level.  相似文献   

19.
The structures of the anhydrous 1:1 proton‐transfer compounds of the dye precursor aniline yellow [4‐(phenyldiazenyl)aniline], namely isomeric 4‐(phenyldiazenyl)anilinium 2‐carboxy‐6‐nitrobenzoate, C12H12N3+·C8H4NO6, (I), and 4‐(phenyldiazenyl)anilinium 2‐carboxy‐4‐nitrobenzoate, C12H12N3+·C8H4NO6, (II), and 4‐(phenyldiazenyl)anilinium 3‐carboxy‐5‐nitrobenzoate monohydrate, C12H12N3+·C8H4NO6·H2O, (III), have been determined at 130 K. In (I) the cation has longitudinal rotational disorder. All three compounds have substructures comprising backbones formed through strong head‐to‐tail carboxyl–carboxylate hydrogen‐bond interactions [graph set C(7) in (I) and (II), and C(8) in (III)]. Two‐dimensional sheet structures are formed in all three compounds by the incorporation of the 4‐(phenyldiazenyl)anilinium cations into the substructures, including, in the cases of (I) and (II), infinite H—N—H to carboxylate O—C—O group interactions [graph set C(6)], and in the case of (III), bridging through the water molecule of solvation. The peripheral alternating aromatic ring residues of both cations and anions give only weakly π‐interactive step features which lie between the sheets.  相似文献   

20.
Molecules of 1,2‐bis(4‐bromophenyl)‐1H‐benzimidazole, C19H12Br2N2, (I), and 2‐(4‐bromophenyl)‐1‐(4‐nitrophenyl)‐1H‐benzimidazole, C19H12BrN3O2, (II), are arranged in dimeric units through C—H...N and parallel‐displaced π‐stacking interactions favoured by the appropriate disposition of N‐ and C‐bonded phenyl rings with respect to the mean benzimidazole plane. The molecular packing of the dimers of (I) and (II) arises by the concurrence of a diverse set of weak intermolecular C—X...D (X = H, NO2; D = O, π) interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号