首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐heterocyclic carbenes (NHCs) based on imidazole‐2‐ylidene ( 1 ) or the saturated imidazolidine‐2‐ylidene ( 2 ) scaffolds are long‐lived singlet carbenes. Both benefit from inductive stabilization of the sigma lone pair on carbon by neighboring N atoms and delocalization of the N pi lone pairs into the nominally vacant p‐pi atomic orbital at the carbene carbon. With thermochemical schemes G4 and CBS‐QB3, we estimate the relative thermodynamic stabilization of smaller ring carbenes and acyclic species which may share the keys to NHC stability. These include four‐membered ring systems incorporating the carbene center, two trivalent N centers, and either a boron or a phosphorus atom to complete the ring. Amino‐substituted cyclopropenylidenes have been reported but three‐membered rings containing the carbene center and two N atoms are not known. Our calculations suggest that amino‐substituted cyclopropenylidenes are comparable in stability to the four‐membered NHCs but that diazacyclopropanylidenes would be substantially less effectively stabilized. Concluding the series are acyclic carbenes with and without neighboring N atoms and a series of “two‐membered ring” azapropadienenylidene cations of form :C?N?W with W = an electron‐withdrawing agent. We have studied W = NO2, CH2(+), CF2(+), and (CN)2C(+). Although these systems display a degree of stabilization and carbene‐like electronic structure, the stability of the NHCs is unsurpassed. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Acylation of 2‐amino‐N‐methyl‐thiobenzamide with substituted benzoyl chlorides has been used to synthesize the corresponding 2‐benzoylamino‐N‐methylthiobenzamides. Subsequent sodium methoxide‐catalyzed ring closure gives the corresponding 3‐methyl‐2‐phenylquinazoline‐4‐thiones. These compounds were characterized by means of their 1H‐ and 12C‐NMR spectra. The kinetics of the cyclization reaction has been followed with UV‐VIS spectroscopy at 100 °C in methanolic solutions of sodium methoxide.  相似文献   

3.
In the three isomeric salts, all C6H7N2O+·C6HCl2O4, of chloranilic acid (2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone) with 2‐, 3‐ and 4‐carbamoylpyridine, namely, 2‐carbamoylpyridinium hydrogen chloranilate (systematic name: 2‐carbamoylpyridinium 2,5‐dichloro‐4‐hydroxy‐3,6‐dioxocyclohexa‐1,4‐dienolate), (I), 3‐carbamoylpyridinium hydrogen chloranilate, (II), and 4‐carbamoylpyridinium hydrogen chloranilate, (III), acid–base interactions involving H‐atom transfer are observed. The shortest interactions between the cation and the anion in (I) and (II) are pyridinium N—H...(O,O) bifurcated hydrogen bonds, which act as the primary intermolecular interaction in each crystal structure. In (III), an amide N—H...(O,O) bifurcated hydrogen bond, which is much weaker than the bifurcated hydrogen bonds in (I) and (II), connects the cation and the anion.  相似文献   

4.
We prepared N‐methyl‐substituted polyurethanes with different substitution degrees from sodium hydride, methyl p‐toluene sulfonate, and polyether–polyurethane containing poly(oxytetramethylene) glycol, 4,4′‐diphenylmethane diisocyanate, and 1,4‐butanediol. The chemical structures were characterized with Fourier transform infrared and 1H NMR. To investigate the effects of the N‐substitution degree on the morphology, thermal stability, and mechanical properties, we used differential scanning calorimetry, thermogravimetric analysis, and a universal testing machine. As the substitution degree increased, the new free (1708 cm?1) and bonded (1650 cm?1) carbonyl peaks increased. There was no bonded carbonyl peak in fully substituted polyurethane because the urethane groups had no hydrogen. At a small substitution degree, we observed a slight increase in the glass‐transition temperature and decrease in the endotherms of soft‐segment and hard‐segment domains due to the decrease in the hard‐segment domain and the increase in the urethane groups in the soft‐segment domain. The hard‐segment domain decreased and then disappeared as the N‐methyl substitution degree increased. These changes in the morphology resulted (1) in decreased modulus and tensile strength for the films because of the decrease in physical crosslinking points and (2) improved thermal stability as the substitution degree increased. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4077–4083, 2002  相似文献   

5.
The title compound, 1‐(2′,3′‐di­deoxy‐β‐d ‐glycero‐pent‐2‐eno­furan­osyl)­thymine 1‐methyl‐2‐pyrrolidone solvate, C10H12N2O4·­C5H9NO, is an NMPO solvate of the anti‐AIDS agent D4T. In its crystal structure, both the pyrimidine and the furan­ose rings are planar and approximately perpendicular [82.1 (4)°]. The value of the torsion angle defining the orientation of the thymine with respect to the joined furane, χ = ?100.8 (4)°, and that of the torsion angle giving the orientation of the hydroxyl group linked to the furane ring, γ = 52.9 (5)°, show that the gly­cosyl­ic link adopts the so‐called high‐anti conformation and the 5′‐hydroxyl group is in the +sc position. The NMPO solvate is linked to the nucleoside through a fairly strong hydrogen bond.  相似文献   

6.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

7.
A series of N‐aryl 2‐alkenamides were produced efficiently by treating N‐aryl 3‐(phenylsulfonyl)‐propanamides with potassium tert‐butoxide in THF at 0°C. With out isolation, it was further treated with an additional equivalent of potassium tert‐butoxide and allyl bromide to give N‐allyl N‐aryl 2‐alkenamides in one pot in good yields. Followed by a ring‐closing metathesis reaction, these N‐allyl N‐aryl 2‐alkenamides were respectively converted into corresponding N‐aryl α,β‐unsaturated γ‐lactams in moderate yields.  相似文献   

8.
Eighteen compounds unknown in the literature, N-(E)-stilbenyloxyalkylcarbonyl- and N-(E)-stilbenyloxyalkylcarbonylaminoalkylcarbonyl-substituted hydrazones of 2-, 3- and 4-pyridinecarboxaldehydes have been prepared. The stereochemical behavior of these compounds in dimethyl-d6 sulfoxide solution has been studied by 1H-nmr technique. The E geometrical isomers and cisltrans amide conformers have been found for N-substituted-hydrazones 1–16 .  相似文献   

9.
The crystal structure of N‐methyl‐4‐piperidyl 2,4‐di­nitro­benzoate, C13H15N3O6, (I), at 130 (2) K reveals that, in the solid state, the mol­ecule exists in the equatorial conformation, (Ieq). Thus, the through‐bond interaction present in the axial conformation, (Iax), is not strong enough to overcome the syn–diaxial interactions between the axial methyl substituent and the axial H atoms on the two piperidyl ring C atoms either side of the ester‐linked ring C atom. The carboxyl­ate group in (I) is orthogonal to the aromatic ring, in contrast with other 2,4‐di­nitro­benzoates, which are coplanar. The piperidyl–ester C—O bond distance is 1.467 (3) Å, which is actually shorter than other equatorial cyclo­hexyl–ester C—O distances. This shorter piperidyl–ester C—O bond distance is due to the reduced electron demand of the orthogonal ester group.  相似文献   

10.
4‐Aminopyrazole‐3‐ones 4b, e, f were prepared from pyrazole‐3‐ones 1b‐d in a four‐step reaction sequence. Reaction of the latter with methyl p‐toluenesulfonate gave 1‐methylpyrazol‐3‐ones 2b‐d . Compounds 2b‐d were treated with aqueous nitric acid to give 4‐nitropyrazol‐3‐ones 3b‐d. Reduction of compounds 3b‐d by catalytic hydrogenation with Pd‐C afforded the 4‐amino compounds 4b, e, f. Using similar reaction conditions, nitropyrazole‐3‐ones derivatives 2c, d were reduced into aminopyrazole‐3‐ones 5e, f. 4‐Iodopyrazole‐3‐ones 7a, 7c and 8 were prepared from the corresponding pyrazol‐3‐ones 2a, 2c and 6 and iodine monochloride or sodium azide and iodine monochloride.  相似文献   

11.
A universal scheme is proposed for the molecular design of heterocyclic recyclizations by replacing the exocyclic hydroxyl groups in exo‐trig‐ ring‐chain tautomeric molecules with substituted amines or hydrazines. The practical applicability of this approach is demonstrated by the condensations of 5‐hydroxy‐5‐methyl‐3‐isoxazolidinones with thioaroyl‐hydrazines and 2‐aminomethylaniline. The condensation products were studied by modern 1H, 13C and 15N NMR spectroscopic methods using three solvents: CDC13, DMSO[D6] and CD3CN. The solvent was found to have a strong effect to the relative amounts of the tautomers.  相似文献   

12.
1,3‐Dipolar cycloaddition reactions of N‐methyl‐C‐arylnitrones with N‐phenyl‐ or N‐methylmaleimide were studied. The reaction of p‐dimethylamino‐, 4‐benzyloxy‐3‐methoxy‐, p‐nitro‐ and p‐chloro‐substituted phenylnitrones with N‐phenylmaleimide gave cis and trans cycloadducts but that of the corresponding phenylnitrones with N‐methylmaleimides only the cis adducts in the case of p‐dimethylamino and 4‐benzyloxy‐3‐methoxy substitution. All cis adducts attain a biased conformation whereas the trans forms are shown (by 1H NMR at 233 K and 13C NMR at 208 K) to be mixtures of two invertomers, namely o‐(N‐lone pair antiperiplanar to 3H; minor) and i‐conformations (3H‐C‐C‐3aH dihedral angle close to 90°; major). PM3 and DFT calculations at the B3LYP/6–31G(d) level of theory prove qualitatively that these two conformers of the trans adduct are of comparable stability and represent energy minima.  相似文献   

13.
A variety of 2‐pyrrolidino‐, 2‐N‐methylpiperazino‐, 2‐piperidino‐, and 2‐morpholino‐1,3,4‐thiadiazines were prepared by cyclocondensation of phenacyl halides with thiosemicarbazides. Heating of the products resulted in desulfurization and formation of pyrazoles. The rate of this process strongly depends on the substitution pattern of the 1,3,4‐thiadiazines.  相似文献   

14.
In the title compound, [Co(C18H37N4O3)](ClO4)Cl·H2O, the CoIII ion has a distorted octahedral geometry, with four N atoms and two O atoms constituting the coordination sphere. The crystal structure is stabilized by a three‐dimensional network of hydrogen bonds.  相似文献   

15.
The complete assignment of the 1H and 13C NMR spectra of various 2‐acetamido‐3‐mercapto‐3‐methyl‐N‐aryl‐butanamides and 2‐acetamide‐3‐methyl‐3‐nitrososulfanyl‐N‐aryl‐butanamides with p‐methoxy, o‐chloro and m‐chloro substituents is reported. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The ortho‐, para‐ and meta‐chloro‐substituted N‐chlorophenyl‐2‐phthalimidoethanesulfonamide derivatives, C16H13ClN2O4S, have been structurally characterized by single‐crystal X‐ray crystallography. N‐(2‐Chlorophenyl)‐2‐phthalimidoethanesulfonamide, (I), has orthorhombic (P212121) symmetry, N‐(4‐chlorophenyl)‐2‐phthalimidoethanesulfonamide, (II), has triclinic (P) symmetry and N‐(3‐chlorophenyl)‐2‐phthalimidoethanesulfonamide, (III), has monoclinic (P21/c) symmetry. The molecules of (I)–(III) are regioisomers which have crystallized in different space groups as a result of the differing intra‐ and intermolecular hydrogen‐bond interactions which are present in each structure. Compounds (I) and (II) are stabilized by N—H...O and C—H...O hydrogen bonds, while (III) is stabilized by N—H...O, C—H...O and C—H...Cl hydrogen‐bond interactions. The structure of (II) also displays π–π stacking interactions between the isoindole and benzene rings. All three structures are of interest with respect to their biological activities and have been studied as part of a programme to develop anticonvulsant drugs for the treatment of epilepsy.  相似文献   

17.
18.
申秀民  刘玉美  何兰 《中国化学》2005,23(3):305-309
Lophenol, cholest-4α-methyl-7-en-3β-ol (1), obtained from Dracaena cochinchinensis (Lour.) S. C. Chen, was structurally modified. It was acetylated to protect 3β-hydroxyl group, and then oxidised by selenium dioxide in acetic acid to give cholest-4a-methyl-8-en-3β, Ta-diol diacetate (3). This compound 3 is unstable in chloroform solution or when heated and easily converted to a diene compound, cholest-4a-methyl-7,14-dien-3β-ol acetate (4). The structures of 3 and 4 were elucidated by means of IR, ^1H NMR, ^13C NMR and MS, and the absolute configuration of 3 was established by X-ray crystallography. The property of 3 was also discussed in this paper. Both 3 and 4 are new compounds and were reported for the first time.  相似文献   

19.
A series of substituted N‐(4‐substituted‐benzoyl)‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 13 ) and N‐arylsulfonyl‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 14 ) were prepared from the reaction of 3‐(1‐methyl‐1H‐imidazol‐2‐yl)propan‐1‐amine ( 7 ) with substituted benzoyl chloride or substituted‐benzene sulfonyl chloride respectively. Compound 7 was prepared by two independent methods.  相似文献   

20.
Two diverse methodologies describe the first synthesis of suitably protected N‐α,N‐1(τ)‐dialkyl‐Lhistidine derivatives. Synthesis of suitably protected N‐α,N‐1(τ)‐dialkyl‐L‐histidines 7‐9 containing different alkyl groups at the N‐α and N‐1(τ) positions was achieved in four steps starting from L‐histidine methyl ester. Whereas, in the one‐step alternate route N‐α‐Boc‐L‐histidine methyl ester upon direct and simultaneous N‐α and N‐1(τ) alkylation with various alkyl halides in the presence of sodium hydride in DMF easily afforded N‐α,N‐1(τ)‐dialkyl‐L‐histidines 14 containing identical alkyl group at the N‐α and N‐1(τ) positions in high yields. Both procedures allowed facile entry to methyl and other higher alkyl groups at the N‐α‐position of the histidine ring  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号