首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UV–Vis spectra for 1:2 complexation of four different para‐substituted meso‐tetraphenylporphyrin (H2t(4‐X)pp) and meso‐tetraphenylporphyrins (H2tpp) with trimethylsilyl chloride (TMSC) displayed large and different redshifts (28–32.4 nm) of Soret and (15–41.7 nm) Q(0‐0) bands, whereas 1:2 complexation of the less flexible tetramesitylporphyrin (H2tmp) with TMSC led to rather small redshift (24.8 nm) of the Soret band and blueshift (−7.4 nm) of the Q(0‐0) band. The varying spectral behavior for the porphyrins complexation seems to essentially reflect the different extent of π‐interactions between the meso‐aryl groups and the presumably saddled porphyrin macrocycle, through their relative coplanarity. The observed order of the rate constants for the complexation of various para‐substituted porphyrins, H2t(4‐OCH3)pp (9.27 ± 0.03) × 10−3 > H2t(4‐CH3)pp (6.68 ± 0.05) × 10−3 > H2tpp (3.2 ± 0.05) × 10−3 > H2t(4‐Cl)pp (8.36 ± 0.06) × 10−4, clearly demonstrated a higher reaction rate for the porphyrins containing para‐substituents with stronger electron donor ability. The calculated order for porphyrins (0.9 ± 0.1) and for TMSC (1.0 ± 0.1) suggests rate = K[Por][TMSC] for the complexation. Attempts were made to explain the absence of spectral evidence for the presence of an intermediate 1:1 (TMSC) Por adduct in terms of its high reactivity and/or relative instability. © 2007 Wiley Periodicals, Inc. 39: 231–235, 2007  相似文献   

2.
3.
4.
The phosphorescence decay of a UV‐A absorber, 4‐tert‐butyl‐4′‐methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV‐B absorbers, 2‐ethylhexyl 4‐methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet–triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy‐donor phosphorescence decay measurements can be applied to the study of the triplet–triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet–triplet annihilation was observed in the BMDBM–OMC and BMDBM–OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions.  相似文献   

5.
The oxidation state, the mobility and the molecular structure of chromium species present on CrOx–Al2O3 catalysts have been studied by combined diffuse reflectance spectroscopy, EPR and reduction–extraction by ethane 1,2 diol. CrO42− species exist on the alumina surface in the form of loosely-interacting species on hydrated surface (species A) and in the form of strongly bonded species on dehydrated Al2O3 surface (species B). The CrO42− species show high mobility and are probably responsible for the formation of CrOx clusters.  相似文献   

6.
Three novel types of thiophene‐containing oxime sulfonates with a big π‐conjugated system were reported as non‐ionic photoacid generators. The irradiation of the newly synthesized photoacid generators using near UV–visible light‐emitting diodes (LEDs) (365–475 nm) results in the cleavage of two weak N O bonds in single molecules, which lead to the generation of different sulfonic acids in good quantum and chemical yields. The mechanism for the N O bond cleavage for acid generation was supported by the UV–visible spectra and real‐time 1H NMR spectra. They are developed as high‐performance photoinitiators without any additives for the cationic polymerization of epoxide and vinyl ether upon exposure to near‐UV and visible LEDs (365–475 nm) at low concentration. In the field of photopolymerization, especially visible light polymerization, it has great potential for application. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 776–782  相似文献   

7.
The ground-state structure of the charge-transfer complex formed by pyridine (Py) as electron donor and chloranil (CA) as acceptor has been studied by full geometry optimization at the MP2 and DFT levels of theory. Binding energies were calculated and counterpoise corrections were used to correct the BSSE. Both MP2 and DFT indicate that the pyridine binds with chloranil to form an inclined T-shape structure, with the pyridine plane perpendicular to the chloranil. The CP and ZPE corrected binding energies were calculated to be 14.21 kJ/mol by PBEPBE/6-31G(d) and 23.21 kJ/mol by MP2/6-31G(d). The charge distribution of the ground state Py–CA complex was evaluated with the natural population analysis, showing a net charge transfer from Py to CA. Analysis of the frontier molecular orbitals reveals a σ–π interaction between CA and Py, and the binding is reinforced by the attraction of the O7 atom of CA with the H23 atom of Py. TD-DFT calculations have been performed to analyze the UV–visible spectrum of Py–CA complex, revealing both the charge transfer transitions and the weak symmetry-relieved chloranil π–π* transition in the UV–visible region.  相似文献   

8.
9.
Activation of ansa‐zirconocenes of the type Rac [Zr{1‐Me2Si(3‐R‐(η5‐C9H5))(3‐R′‐(η5‐C9H5))}Cl2] [R = Et, R′ = H ( 1 ); R = Pr, R′ = H ( 2 ); and R = Et, R′ = Pr ( 3 ), R, R′ = Me ( 4 ) and R, R′ = Bu ( 5 )] by MAO has been studied by UV–visible spectroscopy. Compounds 1–3 have been tested in the polymerization of ethylene at different Al:Zr ratios. UV–vis spectroscopy was used to determine a correlation between the electronic structures of ( 1–5 ) and their polymerization activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Four D‐π‐A‐type nonionic oxime sulfonate photoacid generators (PAGs) have been designed and synthesized for use in light‐emitting diode (LED) excitable cationic photoinitiators, in which N,N‐diphenylamino was used as electron donor with trifluoroacetophenone‐based oxime sulfonates (trifluoromethanoesulfonate and p‐toluenesulfonate) as electron acceptor and substituted fluorene and biphenyl groups as the π‐conjugated systems. PAG‐Ben‐Tol (with biphenyl and p‐toluenesulfonate) and PAG‐Flu‐Tol (with fluorene and p‐toluenesulfonate) showed high quantum yields of photoacid generation (0.33–0.50) and very good thermal stability (over 250 °C). The absorbance spectra of these PAGs were consistent with the emission spectra of commercially gained UV–visible LED light sources. The potential of these PAGs for cationic photoinitiators was tested in two cationic monomer systems. These PAGs needed low light intensity and low concentration for photopolymerization with high conversions of monomer, for example, over 80%, gained at 3.0 mW cm−2 from 365 to 470 nm LEDs. The photochemical mechanisms of these PAGs are comprehensively investigated and discussed in detail. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1146–1154  相似文献   

11.
The interactions in the complexes of tetracyanothylene (TCNE) with benzene and p‐xylene, often classified as weak electron donor–acceptor (EDA) complexes, are investigated by a range of quantum chemical methods including intermolecular perturbation theory at the DFT‐SAPT (symmetry‐adapted perturbation theory combined with density functional theory) level and explicitly correlated coupled‐cluster theory at the CCSD(T)‐F12 level. The DFT‐SAPT interaction energies for TCNE–benzene and TCNE–p‐xylene are estimated to be ?35.7 and ?44.9 kJ mol?1, respectively, at the complete basis set limit. The best estimates for the CCSD(T) interaction energy are ?37.5 and ?46.0 kJ mol?1, respectively. It is shown that the second‐order dispersion term provides the most important attractive contribution to the interaction energy, followed by the first‐order electrostatic term. The sum of second‐ and higher‐order induction and exchange–induction energies is found to provide nearly 40 % of the total interaction energy. After addition of vibrational, rigid‐rotor, and translational contributions, the computed internal energy changes on complex formation approach results from gas‐phase spectrophotometry at elevated temperatures within experimental uncertainties, while the corresponding entropy changes differ substantially.  相似文献   

12.
Genistein isoflavone is shown to exist in two different conformations which are the 90° completely twisted geometry and the 50° less twisted one. Specific interactions with the solvent cage as well as self-association processes seem shifting the isoflavone from the perpendicular conformation towards the less twisted one. The theoretical simulation, using analytical atom–atom pair potential, predicts a self-dimer in a slipped non-sandwich, face to river, perpendicular structure. From the UV–visible photophysics investigations it is revealed that monomeric species cannot exist alone even at very low solute concentration (10−6 M), the self-association process occurs already in this concentration range.  相似文献   

13.
Resonance Raman spectra of poly(p‐phenylenebenzobisoxazole) (PBO), poly(p‐phenylenebenzobisthazole) (PBZT), and poly(pyridobisimidazole) (PIPD) were measured. In the case of PBO, no large dependence on wavelength of excited laser can be observed, whereas in the cases of PBZT and PIPD, the spectra depends on wavelength of excited laser. This difference may be attributed to the colors of the samples: PBO is gold, and PBZT and PIPD are metallic blue, which show the different conjugated states. The spectra of PBO are rather simpler than those of PBZT and PIPD. This is considered to be reflected by the fact that only a chain passes through the unit cell of PBO, while two chains pass through the unit cell of PBZT and PIPD. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1791–1793, 2001  相似文献   

14.
In this study, synthesis of symmetric compounds of 2,2′‐(p‐phenylene)bisbenzothiazole, 2,2′‐(p‐phenyl‐ene)bisbenzimidazole and 5,5′‐dimethyl‐2,2′‐(p‐phenylene)bisbenzoxazole were benefited from the reaction of terephthalohydroxamoyl chloride with 2‐amino‐4‐methyl phenol, o‐aminothio phenol and o‐phenylenedi‐amin compounds. The structures of these compounds were confirmed by elemental analysis, mass, 1H‐NMR and FT‐IR techniques.  相似文献   

15.
The structure of lead tartrate, Pb2+·C4H4O62?, has been solved from X‐ray powder diffraction data. The cation exhibits ninefold coordination and the tartrate groups are linked through Pb?O contacts to form a three‐dimensional network.  相似文献   

16.
Substitution of selected CC units in π‐conjugated organic frameworks by their isoelectronic and isosteric BN units (BN/CC isosterism) has proven to be a successful concept for the development of BN‐doped polycyclic aromatic hydrocarbons (PAHs) with intriguing properties and functions. The first examples have just demonstrated the applicability of this approach to polymer chemistry. Herein, we present the synthesis and comprehensive characterization of the first poly(p‐phenylene iminoborane). This novel inorganic–organic hybrid polymer can be regarded as a BN analogue of the well‐known poly(p‐phenylene vinylene) (PPV). Photophysical investigations on the polymer and a series of model oligomers provide clear evidence of some π‐conjugation across the B=N bonds and extension of the conjugation path with increasing chain length. TD‐DFT calculations provide deeper insight into the electronic structure of the new materials.  相似文献   

17.
Protonation (alkylation) sites of several thiopyrimidine derivatives were directly determined by 1H-15N (1H-13C) heteronuclear single quantum coherence/heteronuclear multiple bond correlation methods, and it was found that in all compounds, protonation (methylation) occurred at the N1 nitrogen. GIAO DFT chemical shifts were in full agreement with the determined tautomeric structures. According to ab initio calculations, the stability of the different protonated forms and methylated derivatives was favored due to thermodynamic control and not kinetic control.  相似文献   

18.
An acrylic–silica hybrid polymeric nanocomposite, comprising well‐distributed silica nanoparticles in acrylic matrix, has been synthesized at a markedly rapid rate from a dendritic acrylic oligomer (DAO) and an acrylic‐functionalized silica (A‐silica) via UV‐curing. A‐silica was made by functioning colloidal silica nanoparticles with 3‐methacryloxypropyltrimethoxysilane (MATMS) and DAO was formed by reacting 1,5‐diamino‐2‐methylpentane (MPMDA) with trimethylopropane triacrylate (TMPTA). The MATMS has been found either doubly or singly bonded to silica nanoparticles but not triply bonded, and the inclusion of MATMS into the siloxane network structure increases the size of silica nanoparticles. The well distribution of A‐silica and its good compatibility with DAO cause an increase in Td of the acrylic–silica hybrid material. Silica nanoparticles are too small to cause any significant light scattering, and do not have deleterious effects on transparency. The “hybrid‐on‐polyethylene terephathalate” films exhibited satisfactory hardness and surface roughness because of silica nanoparticles. The preparation as well as the characterization of the constituting species and the final hybrid material are described in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8149–8158, 2008  相似文献   

19.
The title compound, C10H18, a decalin stereoisomer, crystallizes with Z′ = 0.5 in the space group P21/n. The trans‐decalin molecule is located on an inversion centre with both rings in a chair conformation, making for a quasi‐flat overall shape. Despite the absence of hydrogen bonds, it crystallizes easily. In this work the unknown crystal structure of trans‐decalin has been solved and refined using X‐ray powder diffraction data.  相似文献   

20.
SBA‐15‐PS/phthalhydrazide (PHD) is presented as a new heterogeneous inorganic–organic nanohybrid photocatalyst with high stability, superior recyclability and remarkable performance in the degradation of methyl orange (MO). Distinctive parameters, including photocatalyst and dye concentrations, pH and degradation time, were assessed for MO degradation catalysed by SBA‐15‐PS/PHD. This new heterogeneous nanocatalyst was characterized using Fourier transform infrared and UV–visible spectroscopies, thermogravimetric analysis, scanning and transmission electron microscopies and elemental analysis. Photodegradation of MO of up to 92% under the optimum conditions (photocatalyst = 0.015 g, [MO] = 4 ppm, pH = 2) was accomplished in 25 min using SBA‐15‐PS/PHD. A preliminary kinetic investigation was performed, and pseudo‐first‐order kinetics with a high rate constant (0.068 min?1) was found for MO degradation. Additional results showed that the photodegradation of MO was increased in the presence of hole scavengers. Therefore a photoreduction mechanism for MO degradation is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号