首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of substituted phenyl isocyanates with 2‐amino‐2‐phenylpropanenitrile and 2‐amino‐2‐(4‐nitrophenyl)propanenitrile has been used to prepare substituted 1‐(1‐cyanoethyl‐1‐phenyl)‐3‐phenylureas. In anhydrous phosphoric acid the first products to be formed from 1‐(1‐cyanoethyl‐1‐phenyl)‐3‐phenylureas are phosphates of 4‐methyl‐4‐phenyl‐2‐phenylimino‐5‐imino‐4,5‐dihydro‐1,3‐oxazoles, which on subsequent hydrolysis give the respective ureidocarboxylic acids. On prolongation of the reaction time, the phosphates of 4‐methyl‐4‐phenyl‐2‐phenylimino‐5‐imino‐4,5‐dihydro‐1,3‐oxazoles rearrange to give phosphates of 5‐methyl‐4‐imino‐3,5‐diphenylimidazolidin‐2‐ones, and these are subsequently hydrolysed to the respective substituted 5‐methyl‐3,5‐diphenylimidazolidin‐2,4‐diones. The ureidocarboxylic acids were also prepared by alkaline hydrolysis of 5‐methyl‐3,5‐diphenylimidazolidin‐2,4‐diones. The 5‐methyl‐3,5‐diphenylimidazolidin‐2,4‐diones and ureidocarboxylic acids were characterised by their 1H and 13C NMR spectra. Structure of the 5‐methyl‐5‐(4‐nitrophenyl)‐3‐phenylimidazolidine‐2,4‐dione was verified by X‐ray diffraction. The alkaline hydrolysis of individual imidazolidine‐2,4‐diones was studies spectrophoto‐metrically in sodium hydroxide solutions at 25 °C. The rate‐limiting step of the base catalysed hydrolysis consists in decomposition of the tetrahedral intermediate. The reaction is faster if electron‐acceptor sub‐stituents are present in the 3‐phenyl group of imidazolidine‐2,4‐dione cycle. The pKa values of individual 5‐methyl‐3,5‐diphenylimidazolidine‐2,4‐diones have been determined kinetically.  相似文献   

2.
2‐Amino‐6‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐4‐phenylpyridine‐3‐carbonitrile (1) obtained by the reaction of 4‐(1‐iminoethyl)‐3‐methyl‐1‐phenyl‐2‐pyrazolin‐5‐one with benzylidenemalononitrile, was reacted with triethyl orthoformate followed by hydrazine hydrate, acetic anhydride, acetyl chloride, alkyl halides, benzoyl chloride, sulphuric acid followed by formamide, phenyl isothiocyanate, carbon disulphide followed by ethyl iodide, formamide, trichloroacetonitrile, nitrous acid, giving new oxopyrazolinylpyridines ( 2,3,5,6,8,9,10 ) and related pyridopyrimidines ( 11‐17 ) and pyridotriazine ( 18 ).  相似文献   

3.
Ethyl 7‐amino‐3‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐aryl‐5H‐thiazolo[3,2‐a]pyrimidine‐6‐carboxylate was synthesized by the reaction of 4‐(2‐aminothiazol‐4‐yl)‐3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazoline with arylidene ethyl cyanoacetate and it transformed to related fused heterocyclic systems via reaction with various reagents. The biological activities of these compounds were evaluated.  相似文献   

4.
The styryl ketonic Mannich base 2 has been used as a precursor in the synthesis of 2‐pyrazolines having a basic side chain at C‐3 and a phenolic Mannich base at C‐5. Treatment of the bis(styryl ketonic bases) 6a and 8a with phenylhydrazine affords the bis(3‐functionalized 2‐pyrazolines) 7 and 9 . The transamination between the styryl keto base 10 and 4‐aminoantipyrine leads to 12 , which reacts with piperazine to give 13 . N‐Nitrosation of the sec‐Mannich bases 15a – d followed by reductive cyclization affords 2‐pyrazolines 17a – d . The keto base 14b has been used for the synthesis of 2‐pyrazolines having a phenolic Mannich base at C‐3 and its reaction with 3,5‐dimethyl‐1H‐pyrazole affords 23 . The alkylation of 3‐methyl‐1‐phenyl‐2‐pyrazolin‐5‐one with the bis(Mannich base) 25 was investigated.  相似文献   

5.
The synthesis of various 4‐acylpyrazolones bearing in the acyl moiety either a terminal chloro‐substituent or a terminal ortho‐chlorophenyl group was achieved by reaction of 3‐methyl‐1‐phenyl‐2‐pyrazolin‐5‐one (tautomer to 3‐methyl‐1‐phenyl‐1H‐pyrazol‐5‐ol) with the corresponding acid chloride using calcium hydroxide / 1,4‐dioxane. In one case (reaction with chlorobutanoyl chloride) a spontaneous cyclization occurred leading to the corresponding oxepino[2,3‐c]pyrazole. Detailed NMR spectroscopic investigations with all prepared compounds were performed.  相似文献   

6.
The [PtCl2]‐ or [AuCl]‐catalyzed reaction of 1‐(indol‐2‐yl)‐2,3‐allenols occurred smoothly at room temperature to afford a series of poly‐substituted carbazoles efficiently. Compared with the [PtCl2]‐catalyzed process, the [AuCl]‐catalyzed reaction represents a significant advance in terms of the scope and the selectivity. Selective 1,2‐alkyl or aryl migration of the gold carbene intermediate was observed: compared with the methyl group, the isopropyl, cyclopropyl, cyclobutyl, and cyclohexyl groups migrate exclusively; the cyclopropyl group shifts selectively over the ethyl group; the 1,2‐migration of a non‐methyl linear alkyl is faster than methyl group; the phenyl group migrates exclusively over methyl or ethyl group. DFT calculations show that water makes the elimination of H2O facile requiring a much lower energy and validates the migratory preferences of different alkyl or phenyl groups observed.  相似文献   

7.
Reaction of 4,4,4‐trifluoro‐1‐phenyl‐1,3‐butanedione with hydroxylamine led to the formation of 5‐hydroxy‐3‐phenyl‐5‐(trifluoromethyl)‐4,5‐dihydroisoxazole which was dehydrated to 3‐phenyl‐5‐(trifluoro‐methyl)isoxazole. This isomer can also be synthesized by reaction of 4‐chloro‐4‐phenyl‐1,1,1‐trifluoro‐3‐buten‐2‐one with sodium azide. The regioisomer, 5‐phenyl‐3‐(trifluoromethyl)isoxazole was synthesized by reaction of 1,1,1‐trifluoro‐4‐phenylbut‐3‐yn‐2‐one with hydroxylamine and by the reaction of 3‐chloro‐1‐phenyl‐4,4,4‐trifluorobut‐2‐en‐1‐one with sodium azide. Both isomers were characterized by mass and NMR spectroscopy.  相似文献   

8.
The earlier described a 3‐methyl‐1‐phenyl‐3‐phospholene 1‐oxide ( 1 ) → 6,6‐dichloro‐1‐methyl‐3‐phenyl‐3‐phosphabicyclo[3.1.0]hexane 3‐oxide ( 2 ) → 4‐chloro‐1‐phenyl‐1,2‐dihydrophosphinine 1‐oxide ( 3 ) → 4‐chloro‐5‐methyl‐1‐phenyl‐1,2,3,6‐tetrahydrophosphinine 1‐oxide ( 4 ) reaction sequence was investigated from the point of view of preparing optically active intermediates/products ( 2–4 ). In principle, both the resolution of the corresponding racemic products and the transformation of the optically active starting materials are suitable approaches for the preparation of optically active six‐membered P‐heterocycles ( 2–4 ). Racemization occurred during the dichlorocyclopropanation reaction of (S)‐3‐methyl‐1‐phenyl‐3‐phospholene 1‐oxide ((S)‐ 1 ), but the thermolytic ring opening of (−)‐ 2, and the selective reduction of α,β‐double bond of (−)‐ 3 did not cause the loss of optical activity. First in the literature, the resolution of a 3‐phosphabicyclo[3.1.0]hexane 3‐oxide ( 2 ) and a 1,2,3,6‐tetrahydrophosphinine 1‐oxide ( 4 ) was elaborated. © 2013 Wiley Periodicals, Inc. Heteroatom Chem 24:179–186, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21080  相似文献   

9.
A series of novel 1‐methyl‐3‐(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles was synthesized in three steps from 5‐(1‐methyl‐1H‐indazol‐3‐yl)‐4‐phenyl‐2H‐1,2,4‐triazole‐3(4H)‐thiones. 5‐(1‐Methyl‐1H‐indazol‐3‐yl)‐4‐phenyl‐2H‐1,2,4‐triazole‐3(4H)‐thiones were converted into 1‐methyl‐3‐(5‐(methylsulfonyl)‐4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles upon methylation followed by treatment with aq. KMnO4. The reaction of 1‐methyl‐3‐(5‐(methylsulfonyl)‐4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles with Raney nickel resulted in desulphonylation to afford corresponding 1‐methyl‐3‐(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles. All the new synthesized compounds were characterized by spectral techniques.  相似文献   

10.
Nano‐Zn‐[2‐boromophenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 (nano‐[Zn‐2BSMP]Cl2) as a nanoparticle Schiff base complex and a catalyst was introduced for the solvent‐free synthesis of 4‐((2‐hydroxynaphthalen‐1‐yl)(aryl)methyl)‐5‐methyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐ones by the multicomponent condensation reaction of various aromatic aldehydes, β‐naphthol, ethyl acetoacetate, and phenyl hydrazine at room temperature.  相似文献   

11.
3‐Methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol‐3‐yl)methylene)‐1H‐pyrazol‐5(4H)‐ones (5a‐i) was prepared by the condensation reaction of different 3‐formyl‐2‐phenylindole derivatives (2a‐i) and 3‐methyl‐1‐phenyl‐2‐pyrazoline‐5‐one in quantitative yield by applying various green synthetic methods as grinding, microwave irradiation using different catalysts under solvent‐free mild reaction conditions with high product yields. The structures of the synthesized compounds were characterized on the basis of elemental analysis, infrared, 1HNMR, 13C NMR, and mass spectral data. The synthesized compounds were screened for free radical scavenging, antimicrobial, and DNA cleavage activities. Most of the tested compounds belonging to the 3‐methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol‐3‐yl)methylene)‐1H‐pyrazol‐5(4H)‐ones series exhibited promising activities.  相似文献   

12.
The cyclization of phenacyl anthranilate has been studied with the aim to develop the synthesis of 2‐(2′‐aminophenyl)‐4‐phenyloxazole. However, a different course of the reaction than expected was observed. 2‐Phenyl‐2‐hydroxymethyl‐4‐oxo‐1,2,3,4‐tetrahydroquinazoline ( 3a ) was formed by the reaction of phenacyl anthranilate ( 2 ) with ammonium acetate under various conditions. 3‐Hydroxy‐2‐phenyl‐4(1H)‐quinolinone ( 4 ) arose by heating compound 3a in acetic acid. The same compound was obtained by melting compound 3a , but the yield was lower. Different types of products resulted in the reaction of compound 3a with acetic anhydride. Under mild conditions acetylated products 2‐acetoxymethyl‐2‐phenyl‐4‐oxo‐1,2,3,4‐tetrahydroquinazoline ( 7a ) and 2‐acetoxymethyl‐3‐acetyl‐2‐phenyl‐4‐oxo‐1,2,3,4‐tetrahydroquinazoline ( 8 ) were prepared. If the reaction was carried out under reflux of the reaction mixture, molecular rearrangement took place to give cis and trans 2‐methyl‐4‐oxo‐3‐(1‐phenyl‐2‐acetoxy)vinyl‐3,4‐dihydroquinazolines ( 9a and 9b ). All prepared compounds have been characterised by their 1H, 13C and 15N NMR spectra, IR spectra and MS.  相似文献   

13.
Melamine trisulfunic acid is employed as a recyclable catalyst for the condensation reaction of aromatic aldehydes with 3‐methyl‐l‐phenyl‐2‐pyrazolin‐5‐one. This condensation reaction was performed in ethanol under refluxing conditions giving 4,4′‐(arylmethylene)‐bis‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐5‐ols) in 80‐96% yields.  相似文献   

14.
Ethyl 7‐amino‐3‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐aryl‐5H‐thiazolo[3,2‐a]pyrimidine‐6‐carboxylate was hydrolyzed with an ethanolic sodium hydroxide and the sodium salt thus formed underwent cyclization with acetic anhydride to afford 2‐methyl‐7‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐arylthiazolo[3,2‐a]pyrimido[4,5‐d]oxazin‐4(5H)‐one. This compound was transformed to related heterocyclic systems via its reaction with various reagents. The biological activity of the prepared compounds was tested against Gram positive and Gram negative bacteria as well as yeast‐like and filamentous fungi. They revealed in some cases excellent biocidal properties.  相似文献   

15.
New 2‐pyrone derivatives, dialkyl 3‐cyano‐6‐phenyl‐2‐oxo‐2H‐pyran‐4‐ylmalonates and alkyl 3‐cyano‐6‐phenyl‐2‐oxo‐2H‐pyran‐4‐ylacetates, which were easily prepared by the reaction of 6‐aryl‐4‐methyl‐sulfanyl‐2‐oxo‐2H‐pyran‐3‐carbonitriles with active methylene compounds in the presence of potassium carbonate, show fluorescence emission radiation. The light‐emitting region of dimethyl 3‐cyano‐6‐(4‐N,N‐dimethylamino)styryl‐2‐oxo‐2H‐pyran‐4‐ylmalonate ( 7h ) was 620 nm in dichloromethane, making this compound a typical red fluorescent compound. Methyl 8‐hydroxy‐6‐methyl‐1‐oxo‐3‐phenyl‐1H‐pyrano‐[3,4‐c]pyridine‐5‐carboxylate deriv‐atives also showed fluorescence in the solid state. This is the first example of fluorescence in fused 2‐pyrone derivatives.  相似文献   

16.
Jinfeng Zhang  Jincai Wu 《中国化学》2011,29(9):1951-1954
A series of novel polylactide (PLA) polymers were synthesized initiated by 4‐dicyanomethylene‐2‐methyl‐6‐{4‐[(2‐hydroxyethyl)(methyl)amino]styryl}‐4H‐pyran (DCM) with Sn(Oct)2 as catalyst. The color and emission of the polymer can be tuned just with polymer molecular weight.  相似文献   

17.
New high yield preparation methods were developed for the pharmaceutically interesting compounds, 1‐benzyl‐, 1‐methyl‐, and 1H‐5‐[(2‐oxo‐2‐phenyl)ethyl]imidazoles 1a‐c , respectively. The title compounds were synthesized by four different methods using various starting materials. Two of the methods involved transformation reactions of the key intermediates, 1‐substituted‐5‐[(2‐nitro‐2‐phenyl)ethenyl]imidazoles 2a‐c and 1‐substituted‐5‐[(2‐nitro‐2‐phenyl)ethyl]imidazoles 3a‐c , while the other two utilized the oxidation of 1‐substituted‐5‐[(2‐hydroxy‐2‐phenyl)ethyl]imidazoles 4a‐c , with chromic oxide, and the umpolung reaction of benzaldehyde followed by a condensation reaction of the umpolung intermediate with imidazolecarboxaldehydes 6a‐c.  相似文献   

18.
Four new Schiff bases were designed and synthesized. 5‐Methyl‐4‐(4‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 1 ) and 5‐methyl‐4‐(2‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 2 ) were synthesized by interaction of 1‐phenyl‐3‐methyl‐4‐benzoyl‐2‐pyrazolin‐5‐one (PMBP) with o‐ and p‐phenylenediamine, respectively; 4,4′‐(1,2‐phenylenebis(azanediyl)bis(phenylmethanylylidene))bis(3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one) (compound 3 ) and 5‐methyl‐4‐(phenyl(2‐((3‐phenylallylidene)amino)phenylamino)methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 4 ) were synthesized by interaction of compound 2 with PMBP and cinnamaldehyde in an ethanolic medium, respectively. The molecular structures of the title compounds were first characterized by single‐crystal X‐ray diffraction, mass spectrometry, and elemental analysis. The title compounds were tested for antibacterial activity (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis) by disk diffusion method.  相似文献   

19.
The reaction of dibenzylideneacetones or E,E‐cinnamylidene‐ acetophenones and hydrazine hydrate provided 1‐propionyl derivatives of 5‐aryl‐3‐styryl‐2‐pyrazolines and 3‐aryl‐5‐styryl‐2‐pyrazolines. These unsaturated ketones afforded 1‐(2‐carboxyphenyl) or 1‐(4‐carboxyphenyl) 5‐aryl‐3‐styryl‐2‐pyrazolines and 1‐(4‐carboxyphenyl) derivatives of 3‐aryl‐5‐styryl‐2‐pyrazolines on treatment with (2‐carboxyphenyl)‐hydrazine or (4‐carboxyphenyl)hydrazine in hot acetic acid. Structures of all new 2‐pyrazolines have been elucidated by microanalyses and a combined utilization of various spectroscopic methods.  相似文献   

20.
5‐(2‐Aminothiazol‐4‐yl)‐8‐hydroxyquinoline 2 has been synthesized by treating thiourea with 5‐chloroacetyl‐8‐hydroxyquinoline 1 . The amine 2 was treated with aromatic aldehydes to furnish schiff bases 6a‐c which on treatment with phenyl isothiocyanate gave the corresponding thiazolo‐s‐triazines 7a‐c . Reaction of 2 with phenyl isothiocyanate gave the corresponding aminocarbothiamide derivative 8 which on reaction with malonic acid in acetyl chloride afforded thiobarbituric acid derivative 9 . Coupling of 9 with diazonium salt gave the phenyl hydrazono derivative 10 . However, reaction of 2 with carbon disulphide and methyl iodide afforded dithiocarbamidate 12 which on treatment with ethylenediamine, o‐aminophenol and/or phenylenediamine gave the aminoazolo derivatives 13–15 , respectively. Other substituted fused thiazolopyrimidines 16–20 have been also prepared by the reaction of 2 with some selected dicarbonyl reagents. The characterisation of synthesized compounds has been done on the basis of elemental analysis, IR, 1H‐NMR and mass spectral data. All the newly synthesized compounds have been screened for their antimicrobial activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号