首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the title compound, azido‐2κN‐bis­[μ‐(1η5:2κP)‐di­phenyl­phosphino­cyclo­penta­dienyl][2(η5)‐penta­methyl­cyclo­penta­di­enyl]­iron(III)­rhodium(III) hexa­fluoro­phosphate, [{Rh(C10H15)(N3)}{Fe(μ‐C17H14P)2}]PF6 or [FeRh(C10H15)(μ‐C17H14P)2(N3)]PF6, the coordination sphere of RhIII can be described as pseudo‐tetrahedral, composed of two P atoms from a 1,1′‐bis­(di­phenyl­phosphino)­ferrocene (dppf) ligand, an azido N atom and the centroid of the ring of a C5Me5 (Cp*) ligand. The two cyclo­penta­dienyl rings in the dppf moiety adopt an eclipsed conformation. The Rh⋯Fe distance is 4.340 (2) Å.  相似文献   

2.
The Zn atom in dichloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)­methane]zinc(II), [ZnCl2(C11H16N4)], (I), is tetra­hedrally coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand and two terminal Cl atoms. The mol­ecule has no crystallographic symmetry. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazol­yl)methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to yield inter­molecular C—H⋯Cl contacts, thereby forming a one‐dimensional zigzag chain extending along the b axis. On the other hand, in di‐μ‐chloro‐bis­{chloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methane]cadmium(II)}, [Cd2Cl4(C11H16N4)2], (II), each of the two crystallographically equivalent Cd atoms is penta­coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand, and by one terminal and two bridging Cl anions. The mol­ecule has a crystallographic centre of symmetry located at the mid‐point of the Cd⋯Cd line. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazolyl)­methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to produce pairwise inter­molecular C—H⋯Cl contacts, thereby affording chains of mol­ecules running along the c axis.  相似文献   

3.
The title compound, bis­[tris­(2,2′‐bipyridine)iron(II)] tetra­aqua­tetra‐μ4‐oxo‐penta­cosa‐μ2‐oxo‐undeca­oxo­iron(III)sodium(I)­dodeca­tungsten(VI) dihydrate, [Fe(C10H8N2)3]2[NaFeW12O40(H2O)4]·2H2O, consists of a dodeca­tungstoferrate(III) framework grafted on to an [Na(H2O)4]+ cation, two complex [Fe(2,2′‐bipy)3]2+ cations (2,2′‐bipy is 2,2′‐bipyridine) and two uncoordinated water mol­ecules per formula unit.  相似文献   

4.
Two new salts of the cation [CuI(dmp)2]+ (dmp is 2,9‐dimeth­yl‐1,10‐phenanthroline, C14H12N2), namely bis­[bis­(2,9‐dimeth­yl‐1,10‐phenanthroline‐κ2N,N′)copper(I)] bis­(hexa­fluorophos­phate) hemi[bis­(4‐pyridylmethyl­idene)hydrazine] acetonitrile solvate, [Cu(C14H12N2)2]2(PF6)2·0.5C12H10N4·C2H3N or [Cu(dmp)2]2(PF6)2·0.5(bpmh)·CH3CN [bpmh is bis­(4‐pyridylmethyl­idene)hydrazine, C12H10N4], (I), and bis­(2,9‐dimeth­yl‐1,10‐phenanthroline‐κ2N,N′)copper(I) dicyanamide, [Cu(C14H12N2)2](C2N3) or [Cu(dmp)2][N(CN)2], (II), are reported. The Cu—N bond lengths and the distortion from idealized tetra­hedral geometry of the dmp ligands are discussed and compared with related compounds. The bpmh molecule in (I) is π–π stacked with a dmp ligand at a distance of 3.4 Å, rather than coordinated to the metal atom. The molecule lies across an inversion center in the crystal. In (II), the normally coordinated dicyanamide mol­ecule is present as an uncoordinated counter‐ion.  相似文献   

5.
The ligand 1,2,3,4‐tetra­methyl‐5‐(2‐pyridyl)­cyclo­penta­diene (cp*py) forms a dinuclear complex with UIV, i.e. di‐μ‐oxo‐bis­{chloro­(diethyl ether‐κO)[(η5N)‐1,2,3,4‐tetra­methyl‐5‐(2‐pyridyl)­cyclo­penta­dienyl]uranium(IV)}, [U2Cl2O2(C14H16N)2(C4H10O)2], in which cp*py acts as a chelating ligand, being bound to the metal atom by the cyclo­penta­dienyl unit and also by the N atom of the pyridyl ring.  相似文献   

6.
In bis­[1,1′,2,2′,3,3′,4,4′‐octa­methyl‐5‐(2‐pyridinio)‐5′‐(2‐pyri­dyl)­ferrocene] di‐μ3‐chloro‐hexadeca‐μ2‐chloro‐hexa­chloro­di‐μ4‐oxo‐di‐μ3‐oxo‐bis­[(η5N)‐1,2,3,4‐tetra­methyl‐5‐(2‐pyridyl)­cyclo­penta­dienyl]octauranium(IV) di­chloro­methane tetrasolvate, [Fe(C14H17N)(C14H16N)]2[U8Cl24O4(C14H16N)2]·4CH2Cl2, (I), two protonated Fe(cp*py)2 units [cp*py is tetra­methyl‐5‐(2‐pyridyl)­cyclo­penta­diene] form an ion pair with the dianionic centrosymmetric cluster U8Cl24O4(cp*py)2. The latter is the highest nuclearity assemblage in the chemistry of uranium (non‐uranyl) compounds reported to date.  相似文献   

7.
The structures of trans‐bis[2‐(amino­methyl)­pyridine‐κ2N,N′]­bis­(saccharinato‐κN)­zinc(II), [Zn(C7H4NO3S)2(C6H8N2)2], (I), and [2‐(amino­ethyl)­pyridine‐κ2N,N′]bis­(saccharinato‐κN)­zinc(II), [Zn(C7H4NO3S)2(C7H10N2)], (II), exhibit octa‐ and tetrahedrally coordinated ZnII atoms, respectively. The di­amine ligands behave as N,N′‐bidentate ligands, while saccharinate (sac) is coordinated through the N atom. In (I), the complex lies about an inversion centre with the Zn atom disordered and displaced by 0.256 (2) Å from a centre of symmetry towards a sac N atom. The crystal structure of (I) is stabilized by N—H⋯O hydrogen bonds and the crystal packing of (II) is determined by hydrogen bonding as well as weak π–π stacking interactions between the sac ligands.  相似文献   

8.
The reaction of the diazine ligand 3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazole (pod, C12H8N4O), with Cu(CF3SO3)2 or Ni(ClO4)2 afforded the title complexes di­aqua­bis­[3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazole‐N2,N3]copper(II) bis­(tri­fluoro­methane­sul­fon­ate), [Cu(pod)2(H2O)2](CF3SO3)2, and di­aqua­bis­[3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazo­le‐N2,N3]­nickel(II) diperchlorate, [Ni(pod)2(H2O)2](ClO4)2. Both complexes present a crystallographically centrosymmetric mononuclear cation structure which consists of a six‐coordinated CuII or NiII ion with two pod mol­ecules acting as bidentate ligands and two axially coordinated water mol­ecules.  相似文献   

9.
In the title compounds, {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}nickel(II), [Ni(C19H20N2O2)], and {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}copper(II), [Cu(C19H20N2O2)], the NiII and CuII atoms are coordinated by two iminic N and two phenolic O atoms of the N,N′‐bis­(salicyl­idene)‐2,2‐di­methyl‐1,3‐propane­diaminate (SALPD2?, C17H16N2O22?) ligand. The geometry of the coordination sphere is planar in the case of the NiII complex and distorted towards tetrahedral for the CuII complex. Both complexes have a cis configuration imposed by the chelate ligand. The dihedral angles between the N/Ni/O and N/Cu/O coordination planes are 17.20 (6) and 35.13 (7)°, respectively.  相似文献   

10.
Two differently hydrated crystal forms of the title compound, viz. bis­(acetato‐κ2O,O′)(2,9‐di­methyl‐1,10‐phenanthroline‐κ2N,N′)­mercury(II), [Hg(C2H3O2)2(C14H12N2)] or [HgAc2(dmph)] [dmph is 2,3‐di­methyl‐1,10‐phenantroline (neocuproine) and Ac is acetate], (I), and tris­[bis­(acetato‐κ2O,O′)(2,9‐di­methyl‐1,10‐phenanthroline‐κ2N,N′)­mercury(II)] hexadecahydrate, [Hg(C2H3O2)2(C14H12N2)]3·16H2O or [HgAc2(dmph)]3·16H2O, (II), are presented. Both structures are composed of very simple monomeric units, which act as the building blocks of complex packing schemes stabilized by a diversity of π–π and hydrogen‐bonding interactions.  相似文献   

11.
Tartronic acid forms a hydrogen‐bonded complex, C5H5NO·C3H4O5, (I), with 2‐pyridone, while it forms acid salts, namely 3‐hydroxy­pyridinium hydrogen tartronate, (II), and 4‐hy­droxy­pyridinium hydrogen tartronate, (III), both C5H6NO+·C3H3O5, with 3‐hydroxy­pyridine and 4‐hydroxy­pyridine, respectively. In (I), the pyridone mol­ecules and the acid mol­ecules form R(8) and R(10) hydrogen‐bonded rings, respectively, around the inversion centres. In (II) and (III), the cations and anions are linked by N—H⋯O and O—H⋯O hydrogen bonds to form a hydrogen‐bonded chain. In each of (I), (II) and (III), an intermolecular hydrogen bond is formed between a carboxyl group and the hydroxyl group attached to the central C atom, and in (I), the hydroxyl group participates in an intramolecular hydrogen bond with a carbonyl group. No intermolecular hydrogen bond is formed between the carboxyl groups in (I), or between the carboxyl and carboxyl­ate groups in (II) and (III).  相似文献   

12.
In bis­[1‐(3‐pyridyl)butane‐1,3‐dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1‐(4‐pyridyl)butane‐1,3‐dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′‐chelating diketonate ligands support square‐planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu⋯N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry‐related bis­(1‐pyridylbutane‐1,3‐dion­ato)copper(II) mol­ecules. This causes their self‐organization into two‐dimensional square‐grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O⋯O = 3.018 (4) Å].  相似文献   

13.
The two title complexes, catena‐poly[[{2,2′‐[1,3‐propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]‐μ‐azido], [Co(C17H16N2O2)(N3)]n, (I), and catena‐poly[[{2,2′‐[1,3‐propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]‐μ‐thio­cyanato], [Co(C17H16N2O2)(NCS)]n, (II), are isomorphous polynuclear cobalt(III) compounds. In both structures, the CoIII atom is six‐coordinated in an octa­hedral configuration by two N atoms and two O atoms of one Schiff base, and two terminal N or S atoms from two bridging ligands. The [N,N′‐bis­(salicyl­idene)propane‐1,3‐diaminato]cobalt(III) moieties are linked by the bridging ligands, viz. azide in (I) and thio­cyanate in (II), giving zigzag polymeric chains with backbones of the type [–Co—N—N—N—Co]n in (I) or [–Co—N—C—S—Co]n in (II) running along the c axis.  相似文献   

14.
The two title chromene compounds, 3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C16H12O2, (I), and 2‐(2‐hydroxy­benzyl­idene)‐3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C19H14O3, (II), have been determined in the monoclinic space group P21/n. Compound (I) is mainly stabilized by C—H⋯π inter­actions. Compound (II) is linked into infinite one‐dimensional chains with a C(3) motif via inter­molecular O—H⋯O hydrogen bonds. The inter­molecular C—H⋯π and π–­π inter­actions also play key roles in stabilizing the crystal packing. Two intra­molecular C—H⋯O hydrogen bonds with S(5) motifs were detected in (II).  相似文献   

15.
In the crystals of bis(pyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C5H5N)2], (I), the dinuclear CuII complexes have cage structures with Cu?Cu distances of 2.632 (1) and 2.635 (1) Å. In the crystals of bis(2‐­methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (II), bis­(3‐methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (III), and bis(quinoline‐N)­tetrakis(μ‐­trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C9H7N)2], (IV), the centrosymmetric dinuclear CuII complexes have a cage structure with Cu?Cu distances of 2.664 (1), 2.638 (3) and 2.665 (1) Å, respectively. In the crystals of catena‐poly­[tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II)], [Cu2(C5H11O2Si)4]n, (V), the dinuclear CuII units of a cage structure are linked by the cyclic Cu—O bonds at the apical positions to form a linear chain by use of a glide translation.  相似文献   

16.
Four derivatives of 2,6‐bis­(hydroxy­methyl)­phenol, with various para substituents, have been investigated; these are 2,6‐bis­(hydroxy­methyl)‐4‐methyl­phenol, C9H12O3, (I), 2,6‐bis­(hydroxy­methyl)‐4‐methoxy­phenol, C9H12O4, (II), 2,6‐bis­(hydroxy­methyl)‐4‐phenoxy­phenol, C14H14O4, (III), and 2,6‐bis­(hydroxy­methyl)‐4‐[1‐(4‐methoxy­phenyl)‐1‐methyl­ethyl]­phenol, C18H22O4, (IV). All four structures display hydrogen‐bonding networks resulting in sheets, with possible weak inter‐sheet π–π interactions in one case. In all the structures but one, the mol­ecules form centrosymmetric dimeric subunits held together by two hydrogen bonds between the hydroxy­methyl groups and, in two cases, by probable π–π interactions.  相似文献   

17.
The structures of 3,5‐bis­[4‐(diethyl­amino)­benzyl­idene]‐1‐methyl‐4‐piperidone, C28H37N3O, (I), and 3,5‐bis­[4‐(diethyl­amino)­cinnamyl­idene]‐1‐methyl‐4‐piperidone, C32H41N3O, (II), have been characterized. Because of conjugation between donor and acceptor parts, the central heterocycles (including the carbonyl group) in (I) and (II) are flattened and exhibit a `sofa' conformation, with a deviation of the N atom from the planar fragment. The dihedral angles between the planar part of the heterocycle and the two almost flat fragments that include a phenyl ring and bridging atoms are 23.2 (1) and 11.2 (1)° in (I), and 11.8 (1) and 8.7 (2)° in (II). One‐ and two‐photon absorption of light and the fluorescence of (I) and (II) have also been characterized.  相似文献   

18.
Two of the title compounds, namely (E)‐1,2‐bis­(1‐methyl­benzimidazol‐2‐yl)ethene, C18H16N4, (Ib), and (E)‐1,2‐bis­(1‐ethyl­benzimidazol‐2‐yl)ethene, C20H20N4, (Ic), consist of centrosymmetric trans‐bis­(1‐alkyl­benzimidazol‐2‐yl)ethene mol­ecules, while 3‐eth­yl‐2‐[(E)‐2‐(1‐ethyl­benzimidazol‐2‐yl)­ethen­yl]benzimidazol‐1‐ium perchlorate, C20H21N4+·ClO4, (II), contains the monoprotonated analogue of compound (Ic). In the three structures, the benzimidazole and benzimidazolium moieties are essentially planar; the geometric parameters for the ethene linkages and their bonds to the aromatic groups are consistent with double and single bonds, respectively, implying little, if any, conjugation of the central C=C bonds with the nitro­gen‐containing rings. The C—N bond lengths in the N=C—N part of the benzimidazole groups differ and are consistent with localized imine C=N and amine C—N linkages in (Ib) and (Ic); in contrast, the corresponding distances in the benzimidazolium cation are equal in (II), consistent with electron delocalization resulting from protonation of the amine N atom. Crystals of (Ib) and (Ic) contain columns of parallel mol­ecules, which are linked by edge‐over‐edge C—H⋯π overlap. The columns are linked to one another by C—H⋯π inter­actions and, in the case of (Ib), C—H⋯N hydrogen bonds. Crystals of (II) contain layers of monocations linked by π–π inter­actions and separated by both perchlorate anions and the protruding eth­yl groups; the cations and anions are linked by N—H⋯O hydrogen bonds.  相似文献   

19.
Molecules of the title compound, [Cu(C2H3N)(C11H9N5)(C6H6N2O)](BF4)2·2C2H3N, comprise (aceto­nitrile)[2,6‐bis(pyrazol‐1‐yl)­pyridine](isonicotin­amide)copper(II) cations, tetra­fluoro­borate anions and lattice aceto­nitrile mol­ecules. The cations have distorted square‐pyramidal geometries in which the N3‐donor, viz. 2,6‐bis­(pyrazol‐1‐yl)­pyridine, and the N‐donor, viz. the isonicotin­amide ligand, occupy the four basal positions, with the coordinated aceto­nitrile N‐donor atom occupying the apical position. Pairs of cations are linked by N—H?F hydrogen bonds through tetra­fluoro­borate anions, forming centrosymmetric dimers, which are further linked by C—H?O hydrogen bonds into two‐dimensional undulating sheets, three of which interpenetrate to generate a two‐dimensional network.  相似文献   

20.
The syntheses and crystal structures of the title Pt2II and Pt2III dimers doubly bridged with N,N‐dimethyl­guanidinate ligands, namely bis­(μ‐N,N‐dimethyl­guanidinato)bis­[(2,2′‐bipyridine)platinum(II)](Pt—Pt) bis­(hexa­fluoro­phosphate) acetonitrile disolvate, [Pt2II(C3H8N3)2(C10H8N2)2](PF6)2·2CH3CN, (I), and guanidinium bis­(μ‐N,N‐dimethyl­guanidinato)bis­[(2,2′‐bipyridine)sulfatoplatinum(III)](Pt—Pt) bis­(hexa­fluoro­phosphate) nitrate hexa­hydrate, (C3H10N3)[PtIII2(C3H8N3)2(SO4)2(C10H8N2)2]NO3·6H2O, (II), are reported. The oxidation of the Pt2II dimer into the Pt2III dimer results in a marked shortening of the Pt—Pt distance from 2.8512 (6) to 2.5656 (4) Å. The change is mainly compensated for by the change in the dihedral angle between the two Pt coordination planes upon oxidation, from 21.9 (2) to 16.9 (3)°. We attribute the relatively strong one‐dimensional stack of dimers achieved in the Pt2II compound in part to the strong PtII⋯C(bpy) associations (bpy is 2,2′‐bipyridine) in the crystal structure [Pt⋯C = 3.416 (10) and 3.361 (12) Å].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号