首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The structures of the three phenol–water minima are optimized with MP2 and the interaction-optimized DZPi basis set. Single point calculations are carried out using the slightly larger ESPB basis set, which contains a set of (s,p) bond functions at the midpoint of the hydrogen-bond. The binding energies and hydrogen-bond distances are corrected for basis set superposition error. For all minima, our binding energies De are larger than the previous theoretical estimates. Despite this, our best estimate of the binding energy D0 for the global minimum, 21.08 kJ/mol, is about 2 kJ/mol smaller than the experimental values (23.45±0.48 and 22.92±0.36 kJ/mol).  相似文献   

2.
Partial and integral mixing enthalpies of melts of binary systems Mn-Sc and Mn-Y at 1873 and 1830 K, respectively, are determined by calorimetry. It is found that the minima of the mixing enthalpies are ?7.1 ± 0.4 and -3.2 ± 0.2 kJ/mol at x Mn = 0.60 and 0.61, respectively. The initial partial mixing enthalpies of Sc and Y are ?33.2 ± 2.1 and ?16.6 ± 0.8 kJ/mol, respectively. The thermodynamic properties of melts of binary Mn-Sc(Y) systems are calculated using the ideal associated solution (IAS) model. It is found that the activities of the components exhibit slight negative deviations from the ideal solutions, and the excess Gibbs energies reach ?3.0 and ?1.6 kJ/mol, respectively.  相似文献   

3.
A computational study of dimers formed by aniline and one or two CH3X molecules, X being CN, Cl or F, was carried out to elucidate the main characteristics of the interacting systems. Two different structures were found for each of the dimers, depending on the relative location of the CH3X molecule with respect to the NH2 hydrogen atoms. The most stable complex is formed with acetonitrile, with a complexation energy amounting to ?27.0?kJ/mol. Methyl chloride and methyl fluoride form complexes with complexation energies amounting to ?18.1 and ?17.5?kJ/mol, respectively, though the structural arrangement is quite different for both structures. In most complexes, the leading contribution to the stabilization of the complex is dispersion, though the electrostatic contribution is almost as important. Three different minima were obtained for clusters containing two CH3X molecules depending on the side they occupy with respect to the phenyl ring. The complexation energies for these structures amount to ?58.5, ?38.6 and ?36.3?kJ/mol for acetonitrile, methyl chloride and methyl fluoride, respectively.  相似文献   

4.
We carried out relativistic density functional calculations to investigate systematically the effect of main group element impurities H, C, and O on a Pd4 cluster. We determined a bridging coordination for Pd4H as most stable, whereas several other local minima are energetically close. The interaction of C with Pd4 is strong enough to restructure the cluster, resulting in two Pd2 units bridged by 4-fold coordinated C, but other isomers are again almost degenerate. Nearly degenerate isomers of Pd4O exhibit 2- and 3-fold coordination of O. In the most stable structures, the binding energies of the impurities, 295 kJ/mol for Pd4H, 655 kJ/mol for Pd4C, and 367 kJ/mol for Pd4O, are large enough to allow bond breaking of common small molecules when they interact with an ensemble of Pd4 clusters. Interestingly, the noteworthy relativistic effect on the properties of Pd4 also affects the interaction with impurity atoms. Comparison with other metals reveals similarities with Ni4X and differences from Ir4H, Ir4C, and Pt4H.  相似文献   

5.
The structure, stability, charge redistribution, bonding, and harmonic vibrational frequencies of rare gas containing group II-A fluorides with the general formula FMRgF (where M=Be and Mg; Rg=Ar, Kr, and Xe) have been investigated using second order M?ller-Plesset perturbation theory, density functional theory, and coupled cluster theory [CCSD(T)] methods. The species, FMRgF show a quasilinear structure at the minima and a bent structure at the transition state. The predicted species are unstable with respect to the two-body dissociation channel, leading to the global minima (MF2+Rg) on the singlet potential energy surface. However, with respect to other two-body dissociation channel (FM+RgF), they are found to be stable and have high positive energies on the same surface. The computed binding energy for the two-body dissociation channels are 94.0, 164.7, and 199.7 kJ mol(-1) for FBeArF, FBeKrF, FBeXeF, respectively, at CCSD(T) method. The corresponding energy values are 83.4, 130.7, and 180.1 kJ mol(-1) for FMgArF, FMgKrF, and FMgXeF, respectively, at the same level of theory. With respect to the three-body dissociation (FM+Rg+F) channel as well as dissociation into atomic constituent, they are also found to be stable and have high positive energies. The dissociation of the predicted species typically proceeds via MRgF bending mode at the transition state. The computed barrier heights for the transition states are 11.4, 32.2, and 57.6 kJ mol(-1) for FBeArF, FBeKrF, and FBeXeF, respectively, at the CCSD(T) method. The corresponding barrier heights for the Mg containing species are 2.1, 9.2, and 32.1 kJ mol(-1) along the series Ar--Kr--Xe, respectively. The M--Rg bond energies of the FMRgF species is significantly higher than the corresponding bond energies of the M+--Rg species ( approximately 53 and approximately 15 kJ mol(-1) for Be+--Ar and Mg+--Ar, respectively). The computed energy diagram as well as the geometrical parameters along with the AIM results suggest that the species are metastable with partial covalent character in the M--Rg bonding. Thus, it may be possible to prepare and to characterize these species using low temperature matrix isolation technique.  相似文献   

6.
Ab initio SCF and Mφller-Plesset correlation correction methods in combination with counterpose procedure for BSSE correction have been applied to the theroetical studying of dimethylnitroamine and its dimers and trimers.Three optimized stable dimers and two trimers have been obtained.The corrected binding energies of the most stable dimer and trimer were predicted to be -24.68kJ/mol and -47.27kJ/mol,respectively at the MP2/6-31G^*//HF/6-31G^* level.The proportion of correlated interation energies to their total interaction energies for all clusters was at least 29.3 percent,and the BSSE of ΔE(MP2) was at least 10.0kJ/mol.Dispersion and/or electrostatic force were dominant in all clusters.There exist cooperative effects in both the chain and the cyclic trimers.The vibrational frequencies associated with N-O stretches or wags exhibit slight red shifts,but the modes associated with the motion of hydrogen atoms of the methyl group show somewhat blue shifts with respect to those of monomer.Thermodynamic properties of dimethylnitroamine and its clusters at different temperatures have been calculated on the basis of vibrational analyses.The changes of the Gibbs free energies for the aggregation from monomer to the most stable dimer and trimer were predicted to be 14.37kJ/mol and 30.40kJ/mol,respectively,at 1 atm and 298.15K.  相似文献   

7.
Density functional theory, B3LYP/6‐31G** and B3LYP/6‐311+G(2d,p), and ab initio MP2/6‐31G** calculations have been carried out to investigate the conformers, transition states, and energy barriers of the conformational processes of oxalic acid and its anions. QCISD/6‐31G** geometrical optimization is also performed in the stable forms. Its calculated energy differences between the two most stable conformers are very near to the related observed value at 7.0 kJ/mol. It is found that the structures and relative energies of oxalic acid conformers predicted by these methods show similar results, and that the conformer L1 (C2h) with the double‐interfunctional‐groups hydrogen bonds is the most stable conformer. The magnitude of hydrogen bond energies depends on the energy differences of various optimized structures. The hydrogen bond energies will be about 32 kJ/mol for interfunctional groups, 17 kJ/mol for weak interfunctional groups, 24 kJ/mol for intra‐COOH in (COOH)2, and 60 kJ/mol for interfunctional groups in (COOH)COO−1 ion if calculated using the B3LYP/6‐311+G(2d,p) method. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 541–551, 2000  相似文献   

8.
Ab initio calculations have been carried out on the 1,3,5,7- and 1,2,4,7-tetraene configurations of the cyclooctatetraenyl radical at UHF, ROHF, MCSCF, ROCISD, QCISD, and CCSD(T) levels of theory with 6-311G(d,p) and cc-pVDZ basis sets. Although spin contamination is present, the ROCISD calculations support the energies obtained from less intensive, UHF-based coupled cluster calculations over the energies obtained from MCSCF analysis of the pi-electron orbitals. The 1,3,5,7-form is a local minimum at the coupled cluster levels, higher in energy than the resonance-stabilized 1,2,4,7-form by 10-13 kJ/mol, but bounded by a barrier of less than 0.5 kJ/mol. The isomerization surface connecting these two structures is described and results reported from integration of the vibrational Schr?dinger equation on that surface. Excited vibrational states at energies just above the isomerization barrier are dominated by the character of the 1,3,5,7-tetraenyl radical, which suggests that chemistry involving this intermediate at typical combustion temperatures may branch at this juncture.  相似文献   

9.
采用5T簇模型,利用密度泛函理论在B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d)水平下研究正丁烷在酸性分子筛上的单分子催化裂解反应。本文重点详细研究了正丁烷在分子筛表面不同C位的脱氢反应。在B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d)水平下计算所得第一和第二位C-C键裂解的活化能垒分别为 238、217 kJ/mol。而第一第二序位脱氢反应能垒分别为296、242 kJ/mol。正丁烷不同序位脱氢反应的活化能垒相差54 kJ/mol。从计算结果可以看出,正丁烷在分子筛上催化裂解脱氢反应优先发生在第二位C原子上。此外,本文还讨论了簇模型结构与酸性的关系,结果显示改变封端Si-H键的键长的方法可以用来模拟分子筛酸性变化。最后研究了分子筛酸性变化与正丁烷催化裂解反应能垒的关系。  相似文献   

10.
We use a variant of the focal point analysis to refine estimates of the relative energies of the four low‐energy torsional conformers of glycolaldehyde. The most stable form is the cis‐cis structure which enjoys a degree of H‐bonding from hydroxyl H to carbonyl O; here dihedral angles τ1 (O?C? C? O) and τ2 (C? C? O? H) both are zero. We optimized structures in both CCSD(T)/aug‐cc‐pVDZ and aug‐cc‐pVTZ; the structures agree within 0.01 Å for bond lengths and 1.0 degrees for valence angles, but the larger basis brings the rotational constants closer to experimental values. According to our extrapolation of CCSD(T) energies evaluated in basis sets ranging to aug‐cc‐pVQZ the trans‐trans form (180°, 180°) has a relative energy of 12.6 kJ/mol. The trans‐gauche conformer (160°, ±75°) is situated at 13.9 kJ/mol and the cis‐trans form (0°, 180°) at 18.9 kJ/mol. Values are corrected for zero point vibrational energy by MP2/aug‐cc‐pVTZ frequencies. Modeling the vibrational spectra is best accomplished by MP2/aug‐cc‐pVTZ with anharmonic corrections. We compute the Watsonian parameters that define the theoretical vibrational‐rotational spectra for the four stable conformers, to assist the search for these species in the interstellar medium. Six transition states are located by G4 and CBS‐QB3 methods as well as extrapolation using energies for structures optimized in CCSD(T)/aug‐cc‐pVDZ structures. We use two isodesmic reactions with two well‐established thermochemical computational schemes G4 and CBS‐QB3 to estimate energy enthalpy and Gibbs energy of formation as well as the entropy of the gas phase system. Our extrapolated electronic energies of species appearing in the isodesmic reactions produce independent values of thermodynamic quantities consistent with G4 and CBS‐QB3. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Computer-implemented cluster models have been devised for ~2-nm anatase nanoparticles with exposed (001) and (100) faces. The Lewis acid sites occurring in these faces have been characterized by calculating the enthalpy of CO adsorption. In the Ti114O228 and Ti187O376H4 clusters, the corner oxygen atoms compensating the electric charge are bound to titanium atoms by double bonds with a length of approximately 1.7 Å, which is in agreement with experimental data. The average enthalpy of CO adsorption on the (001) and (100) faces at a zero coverage is ?87.62 and ?135.31 kJ/mol, respectively. The deviation from the average value is 20.2 and 8.8%, respectively. The average enthalpy of CO adsorption for the Ti114O228 cluster is ?129.40 kJ/mol, and that for the Ti187O376H4 cluster is ?119.79 kJ/mol.  相似文献   

12.
郝兰  王艳  陈光巨 《化学学报》2008,66(9):1028-1036
采用固体镶嵌势能模型和DFT/B3LYP方法研究了在Pd/MgO和Cu/MgO表面吸附CO和O2分子的电子性质. 计算结果表明, 在完美MgO(100)表面Pd原子对CO和O2的吸附能分别为206.5和84.8 kJ/mol, 因此可知Pd原子更容易吸附CO分子; 而当Pd原子附着于有氧缺陷的MgO表面时, 它对两种分子的吸附都非常弱. 相反, 附着于MgO表面的Cu原子对O2分子的吸附更为有利, 其吸附能在140~155 kJ/mol之间. 研究结果还表明, 对于双分子吸附体系, 即CO+CO, CO+O2, O2+O2体系, 双分子之间的结合力可减小完美MgO表面上Pd原子与被吸附分子的相互作用, 使吸附能减少了46~96 kJ/mol. 而对于在MgO表面上的Cu原子, 只有O2+O2 体系使吸附能减少了大约50~71 kJ/mol.  相似文献   

13.
Noble‐gas‐noble‐metal hydroxides NgAuOH (Ng = Kr, Xe) are investigated at the MP2 theoretical level. All species are found to be in Cs symmetry with an approximate linear Ng? Au? O moiety. The noble‐gas‐noble‐metal bond lengths are comparable with covalent limits, and the corresponding binding energies have been computed to be 59.6 and 83.4 kJ/mol for KrAuOH and XeAuOH, respectively. Except the charge‐induced dipole contribution to the binding energies, the remainder could be ascribed to the higher‐order charge‐induction energies, dispersion energies, the contributions of multipole moments on AuOH and covalent effects. The title species are sufficiently chemical bound and are expected to be stable species theoretically. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

14.
Correlated calculations are used to analyze the interaction between nitrosyl hydride (HNO) and hypohalous acids (HOF, HOCl, and HOBr). Two minima are located on the potential energy surface of each complex, in both of which HOX acts as proton donor. Donation to the N atom of HNO makes for a more strongly bound complex, as compared to the OH..O bond in the secondary minimum. Binding energies of the global minimum are about 22 kJ/mol, as compared to 18 kJ/mol for the secondary structure; there is little sensitivity to the identity of the halogen atom. Whereas the covalent OH bond of HOX stretches and shifts to the red upon complexation, the NH bond of HNO, whether involved in a H-bond or not, behaves in the opposite manner.  相似文献   

15.
The conformations of dodecamethylcyclohexasilane Si6Me12 and undecamethylcyclohexasilane Si6Me11H have been investigated by ab initio calculations employing the B3LYP density functional with a 6-31+G(d) basis set. Local minima as well as transition structures were calculated with imposed symmetry constraints. For Si6Me12, three unique minima, which correspond to the chair, twist and boat conformations were located with relative zero-point-vibration-corrected energies of 0.0, 7.8 and 11.4 kJ mol(-1). A half-chair conformation with four coplanar silicon atoms connects the chair and twisted minima via an energy barrier of 16.0 and 8.2 kJ mol(-1), respectively. A second transition structure with a barrier of 3.9/0.3 kJ mol(-1) connects the twist with the boat structure. Solution Raman spectra of Si6(CH3)12 and Si6(CD3)12 fully corroborate these results. Below -40 degrees C, the symmetric SiSi ring breathing vibration is a single line, which develops a shoulder (originating from the twist conformer) at longer wavelengths whose intensity increases with increasing temperature. From a Van't Hoff plot, the chair/twist enthalpy difference is 6.6+/-1.5 kJ mol(-1) for Si6(CH3)12 and 6.0+/-1.5 kJ mol(-1) for Si6(CD3)12, which is in reasonable agreement with the ab initio results. Due to the low barrier, the boat conformation cannot be observed, because either the lowest torsional vibration level lies above it or a rapid interconversion between the twist and boat conformations occurs, resulting in averaged Raman spectra. For Si6Me11H, six local minima were located. The chair with the hydrogen atom in the axial position (axial chair) is the global minimum, followed by the equatorial chair (+1.9 kJ mol(-1)) and the three twist conformers (+5.3, +8.0 and +8.1 kJ mol(-1)). The highest local minimum (+11.9 kJ mol(-1)) is a C(s) symmetric boat with the hydrogen atom in the equatorial position. Two possible pathways for the chair-to-chair interconversion with barriers of 13.9 and 14.5 kJ mol(-1) have been investigated. The solution Raman spectra in the SiSi ring breathing region clearly show that below -50 degrees C only the axial and equatorial chairs are present, with an experimental deltaH-value of 0.46 kJ mol(-1). With increasing temperature a shoulder develops which is attributed to the combined twist conformers. The experimental deltaH-value is 6.9 kJ mol(-1), in good agreement with the ab initio results. Due to the low interconversion barriers, the various twist conformers cannot be detected separately.  相似文献   

16.
F原子与瞬态自由基CH_2SH反应的理论研究   总被引:1,自引:0,他引:1  
胡正发  冯霞  王振亚  周士康 《化学学报》2002,60(10):1760-1767
用量子化学从头算和密度泛函理论(DFT)对F原子与自由基CH_2SH在势能面上 的反应进行了研究。在B3LYP/6-311G水平上计算出了各物种的优化构型、振动频率 和零点振动能(ZPVE);各物种的总能量由B3LYP/6-311 + G(2df, pd)//B3LYP/6- 311G计算,另外对反应物和产物还计算了其G3能量。结果表明:首先F通过与C或S 结合的两种途径与CH_2SH相配位,再通过H(4)原子转移形成甲基,然后甲基再旋 转,甲基中H(4)原子最终与F结合,反应产物为HF和CH_2S。反应为放热反应,分 别为ΔH_r = -370.7 kJ/mol (DFT)和-396.94 kJ/mol (G3)。此外依据计算出的反 应热,可得自由基·CH_2SH的生成热Δ_fH°_(298.15) = 146.44 kJ/mol (DFT), 而Δ_fH°_0 = 167.36 kJ/mol (G3)。它们与以前的实验和理论值是一致的。  相似文献   

17.
The electron affinity of NO has been measured to be 0.026 eV by laser photodetachment experiments. This low electron affinity (just 2.5 kJ/mol or 210 cm-1) presents a computational challenge that requires careful attention to several aspects of the computational procedure required to predict the electron affinity of NO from first principles. We have used augmented correlation consistent basis sets with several coupled cluster methods to calculate the molecular energies, bond dissociation energies, bond lengths, vibrational frequencies, and potential energy curves for NO and NO-. The electron affinity of NO, EA0, using the CCSD(T) method and extrapolating to the complete basis set limit, is calculated to be 0.028 eV. The calculated bond dissociation energies, D0, for NO and NO- are 622 and 487 kJ/mol, respectively, compared with experimental values of 626.8 and 487.8 kJ/mol. From the calculated potential energy curves for NO and NO- the vibrational wavefunctions were determined. The calculated vibrational wavefunctions predict Franck-Condon factor ratios in good agreement with the values determined in the photodetachment experiment.  相似文献   

18.
On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.1±0.12 kJ/mol for HB?H, 410.5±0.50 kJ/mol for HOB-OH, 357.8±1.46 kJ/mol for ClB-Cl, and 504.5±0.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.9±0.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.0±1.84 kJ/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.2±2.34 kJ/mol and the BF-DMC B-Cl BDE is 523.3±0.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.  相似文献   

19.
The C? F bond activation mechanism of CF3 radical by bare Co+ has been studied by density functional theory. Three local minima and two first‐order saddle points were located for the potential energy surface (PES) of [Co, C, F3]+. The activation barrier involving C? F bond activation was calculated to be only 14.73 kJ/mol, while the largest barrier of 149.29 kJ/mol on the FES involves Co? C bond rupture. The bonding mechanism between Co+, C and F atoms were discussed based on Mulliken population. The relevant bond dissociation energy and thermochemistry data were calculated with the limited experimental values, and the results are in good agreement with the experimental findings.  相似文献   

20.
The interaction between a methane molecule and the VO(+) cation in the gas phase has been investigated by means of single reference density functional (B3LYP) and wave function-based multireference (MR) correlation calculations. For the latter, an extrapolation technique is used to evaluate correlation energies at the basis set limit. A comprehensive picture for the C-H activation features a variety of molecular structures corresponding to both minima and transition states. Possible reaction paths are discussed, also taking into account change of the spin multiplicity. Activation of the methane molecule by VO(+) is always an endothermic process. Competing reaction paths might be expected. An evaluation of miscellaneous computational methods is performed using calculated energy differences for various molecular structures. Results obtained from the MR calculations exhibit no systematic convergence with increasing size of the active space used, and for two largest active spaces relative energies still differ by up to 25 kJ/mol. Simple mean difference between the B3LYP results and the best MR values is -50 +/- 19 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号