首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
From the stems of Fissistigma bracteolatum, a novel natural product with an unprecedented skeleton, bractelactone ( 1 ), was isolated, together with four known compounds: piperolactam A ( 2 ), aristololactam BIII ( 3 ), aristololactam BII ( 4 ), and fissilandione ( 5 ). The structure of 1 was established on the basis of spectroscopic data as (3Z)‐6,7‐dihydroxy‐4‐methoxy‐3‐(phenylmethylidene)‐5‐(3‐phenylpropanoyl)‐1‐benzofuran‐2(3H)‐one. This compound may be derived from a hybrid of a chalcone and a cinnamic acid, or from a degradation product of a dichalcone. Compounds 1, 2 , and 5 showed inhibitory effects on NO generation by RAW264.7 macrophages in response to lipopolysaccharide. Compounds 2 and 5 showed inhibitory effects on formyl‐L ‐methionyl‐L ‐leucyl‐L ‐phenylalanine (fMLP)‐induced superoxide anion (O ) generation in human neutrophils.  相似文献   

2.
Five organotin(IV) thioesters of N‐phthaloyl amino acids with the general formulae R3SnL (R = Me, Ph) and nBu2SnL2 were synthesized with L = N‐phthaloyl‐thioalanine and N‐phthaloyl‐thioleucine. The structures of trimethyltin(IV) N‐phthaloyl‐thioleucinate ( 1 ), trimethyltin(IV) N‐phthaloyl‐thioalaninate ( 2 ), triphenyltin(IV) N‐phthaloyl‐thioleucinate ( 3 ), triphenyltin(IV) N‐phthaloyl‐thioalaninate ( 4 ), and di‐n‐butyltin(IV) di‐N‐phthaloyl‐thioalaninate ( 5 ) were characterized by means of X‐ray diffractometry. Quantumchemical investigations served to clarify several structural peculiarities of the isolated compounds.  相似文献   

3.
Controlled polymerization of acyclic N‐vinylamides, that is, N‐methyl‐N‐vinylacetamide (NMVA), N‐vinylacetamide (NVA), and N‐vinylformamide (NVF), by organotellurium‐mediated radical polymerization (TERP) is reported. The corresponding poly(N‐vinylamide)s with controlled molecular weight and low dispersity (Ð<1.25) were obtained with high monomer conversion in all cases. This is the first report on the controlled polymerization of NVF. Hydrolysis of the polymers, in particular PNVF, occurred quantitatively under mild reaction conditions, giving structurally controlled poly(vinylamine)s. Block copolymers containing poly(N‐vinylamide) and poly(vinylamine) segments were also synthesized in a controlled manner.  相似文献   

4.
Reaction Behaviour of Several Carbodiimides with 1, 1'‐Ferrocenedicarboxylic Acid 1, 1'‐bis‐(1, 3‐dicyclohexylureidocarbonyl)‐ferrocene ( 1 ), 1, 1'‐bis‐(1, 3‐diisopropylureidocarbonyl)‐ferrocene ( 2 ) and ferrocene‐1, 1'‐bis‐Np‐tolylcarboxamide ( 6 ) were synthesized by melting down 1, 1'‐ferrocenedicarboxylic acid ( 7 ) together with N, N'‐dicyclohexylcarbodiimide (DCC), N, N'‐diisopropylcarbodiimide (DIC) or N, N'‐di‐p‐tolylcarbodiimide ( 8 ), respectively, without application of any solvent in a short space of time. Substance 1 , 2 , 1, 1'‐bis‐(1‐ethyl‐3‐tert‐butylureidocarbonyl)‐ferrocene ( 3 ), 1‐(1‐tert‐butyl‐3‐ethylureidocarbonyl)‐1'‐(1‐ethyl‐3‐tert‐butylureidocarbonyl)‐ferrocene ( 4 ) and 1, 1'‐bis‐(1‐tert‐butyl‐3‐ethylureidocarbonyl)‐ferrocene ( 5 ) were obtained in good yield by reacting 7 DCC, DIC, or Ntert‐butyl‐N'‐ethylcarbodiimide ( 9 ), respectively, with in ethyl acetate for weeks. Transannular 1, 1'‐ferrocenedicarboxylic anhydride was not detectable or isolable in these reactions. All new compounds were characterized by 1H‐NMR, 13C‐NMR, IR, MS and elementar analysis. In the case of 1 a single crystal structure analysis was made.  相似文献   

5.
程琳  应磊  杨小玲  蹇锡高 《中国化学》2005,23(2):200-203
A new monomer diacid, 1,2-dihydro-2-(4-carboxylphenyl)-4-[4-(4-carboxylphenoxy)-3-methylphenyl]phtha-lazin-1-one (3), was synthesized through the aromatic nucleophilic substitution reaction of a readily available unsymmetrical phthalazinone 1 bisphenol-like with p-chlorobenzonitrile in the presence of potassium carbonate in N,N-dimethylacetamide and alkaline hydrolysis. The diacid could be directly polymerized with various aromatic diamines 4a-4e using triphenyl phosphite and pyridine as condensing agents to give five new aromatic poly(ether amide)s 5a-5e containing the kink non-coplanar heterocyclic units with inherent viscosities of 1.30-1.54 dL/g.The polymers were readily soluble in a variety of solvents such as N,N-dimethylformamide (DMF), N,N-dimethyl-acetamide (DMA), dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidinone (NMP), and even in m-cresol and pyridine (Py). The transparent, flexible and tough films could be formed by solution casting. The glass transition tem-peratures Tg were in the range of 286-317℃.  相似文献   

6.
Four compounds derived from 2‐aminothiazole and 2‐amino‐2‐thiazoline were prepared by coupling the respective bases with the acid chlorides of either 3‐ or 4‐(N,N‐dimethylamino)benzoic acid. Products were identified using infrared spectroscopy, 1H NMR spectroscopy and electrospray mass spectroscopy and in two cases by single‐crystal X‐ray diffraction. Of the four, N‐(thiazol‐2‐yl)‐3‐(N,N‐dimethylamino)‐benzamide (1), N‐(thiazolin‐2‐yl)‐4‐(N,N‐dimethylamino)benzamide (2), N‐(thiazolin‐2‐yl)‐3‐(N,N‐dimethylamino) benzamide (3) and N‐(thiazolin‐2‐yl)‐4‐(N,N‐dimethylamino)benzamide (4), the hydrochloride salts of compounds 3 and 4 showed anti‐inflammatory activity across a concentration range of 10?2?5 × 10?4 M while 3 (at a concentration of 10?5 M) was found to have no adverse effect on myocardial function. The X‐ray crystal structure of 2 and the 1:1 adduct structure of 3 with 3‐(N,N‐dimethylamino)benzoic acid are reported.  相似文献   

7.
In this study, some cobalt(II)tetraaza Schiff base complexes were used as donors in coordinating to triphenyltin(IV)chloride as acceptors; the kinetics and mechanism of the adduct formation were studied spectrophotometrically. Co(II)tetraaza Schiff base complexes used were [Co(amaen)][N,N′‐ethylene‐bis‐(o‐amino‐α‐methylbenzylideneiminato)cobalt(II)] ( 1 ), [Co(appn)] [N,N′‐1,2‐propylene‐bis‐(o‐amino‐α‐phenylbenzylideneiminato)cobalt(II)] ( 2 ), [Co(ampen)] [N,N′‐ethylene‐bis‐(o‐amino‐α‐phenylbenzylideneiminato)cobalt‐(II)] ( 3 ), [Co(cappn)][N,N′‐1,2‐proylene‐bis‐(5‐chloro‐o‐amino‐α‐phenylbenzylideneiminato)cobalt(II)] ( 4 ), and [Co(campen)] [N,N′‐ethylene‐bis‐(5‐chloro‐o‐amino‐α‐phenylbenzylid‐eneiminato)cobalt(II)] ( 5 ). The reactivity trend of the complexes in interaction with triphenyltin(IV)chloride was Co(amaen) > Co(appn) > Co(ampen) > Co(cappn) > Co(campen). The linear plots of kobs versus the molar concentration of the triphenyltin(IV)chloride, a high span of the second‐order rate constant k2 values, and large negative values of ΔS and low ΔH values suggest an associative (A) mechanism for the acceptor–donor adduct formation. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 635–640, 2012  相似文献   

8.
Quinolone analogues I‐VI with pyridazino[3,4‐b]quinoxaline ring system were synthesized form the (l‐alkylhydrzino)quinoxalina N‐oxides 1 via oxidation of pyridazino[3,4‐b]quinoxalines 2,3,5,7 , quinoxalino[2,3‐c]cinnolines 4 , and 1,2‐dizepino[3,4‐b]quinoxalines 6 . The biological activities of quinolone analogues IVa (N1‐methyl‐C3‐methyl), Va (N1‐methyl‐C3‐ethyl), and VI (N1‐methyl‐C3‐H) were superior to those of quinolone analogues I (N1‐ethyl‐C3‐carboxyl), 26b (N1‐ethyl‐C3‐carboxylate), and IIIc,d [N1‐alkyl‐C3‐(CH2)3COOC2H5].  相似文献   

9.
A straightforward and scalable eight‐step synthesis of new N‐heterocyclic carbenes (NHCs) has been developed from inexpensive and readily available 2‐nitro‐m‐xylene. This process allows for the preparation of a novel class of NHCs coined ITent (“Tent” for “tentacular”) of which the well‐known IMes (N,N′‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene), IPr (N,N′‐bis(2,6‐di(2‐propyl)phenyl)imidazol‐2‐ylidene) and IPent (N,N′‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene) NHCs are the simplest and already known congeners. The synthetic route was successfully used for the preparation of three members of the ITent family: IPent (N,N′‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene), IHept (N,N′‐bis(2,6‐di(4‐heptyl)phenyl)imidazol‐2‐ylidene) and INon (N,N′‐bis(2,6‐di(5‐nonyl)phenyl)imidazol‐2‐ylidene). The electronic and steric properties of each NHC were studied through the preparation of both nickel and palladium complexes. Finally the effect of these new ITent ligands in Pd‐catalyzed Suzuki–Miyaura and Buchwald–Hartwig cross‐couplings was investigated.  相似文献   

10.
《先进技术聚合物》2018,29(8):2273-2280
Multiresponsive amphiphilic poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) (PDMAEMA‐b‐PNIPAM) was successfully synthesized by reversible addition‐fragmentation chain transfer polymerization. Poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) has thermal and pH stimuli responsiveness. Their lower critical solution temperature and hydrodynamic radius can be adjusted by varying the copolymer composition, block length, solution pH, and temperature. In addition, a convenient method has been established to prepare cross‐linked silica‐coated nanoparticles with PDMAEMA‐b‐PNIPAM micelles as a template, resulting in good organic/inorganic hybrid nanoparticles defined as 175 to 220 nm. The structure and morphology were characterized by proton nuclear magnetic resonance (1HNMR), Fourier‐transform infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), and transmission electron microscopy‐energy dispersive X‐ray spectroscopy (TEM‐EDS).  相似文献   

11.
N,N′‐Pyromelliticdiimido‐di‐L ‐alanine ( 1 ), N,N′‐pyromelliticdiimido‐di‐L ‐phenylalanine ( 2 ), and N,N′‐pyromelliticdiimido‐di‐L ‐leucine ( 3 ) were prepared from the reaction of pyromellitic dianhydride with corresponding L ‐amino acids in a mixture of glacial acetic acid and pyridine solution (3/2 ratio) under refluxing conditions. The microwave‐assisted polycondensation of the corresponding diimide‐diacyl chloride monomers ( 5–7 ) with 4‐phenyl‐2,6‐bis(4‐aminophenyl) pyridine ( 10 ) or 4‐(p‐methylthiophenyl)‐2,6‐bis(4‐aminophenyl) pyridine ( 12 ) were carried out in a laboratory microwave oven. The resulting poly(amide‐imide)s were obtained in quantitative yields, and they showed admirable inherent viscosities (0.12–0.55 dlg?1), were soluble in polar aprotic solvents, showed good thermal stability and high optical purity. The synthetic compounds were characterized by IR, MS, 1H NMR, and 13C NMR spectroscopy, elemental analysis, and specific rotation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Novel allyl‐acrylate quaternary ammonium salts were synthesized using two different methods. In the first (method 1), N,N‐dimethyl‐N‐2‐(ethoxycarbonyl)allyl allylammonium bromide and N,N‐dimethyl‐N‐2‐(tert‐butoxycarbonyl)allyl allylammonium bromide were formed by reacting tertiary amines with allyl bromide. The second (method 2) involved reacting N,N‐dialkyl‐N‐allylamine with either ethyl α‐chloromethyl acrylate (ECMA) or tert‐butyl α‐bromomethyl acrylate (TBBMA). The monomers obtained with the method 2 were N,N‐diethyl‐N‐2‐(ethoxycarbonyl)allyl allylammonium chloride, N,N‐diethyl‐N‐2‐(tert‐butoxycarbonyl)allyl allylammonium bromide, and N,N‐piperidyl‐N‐2‐(ethoxycarbonyl)allyl allylammonium chloride. Higher purity monomers were obtained with the method 2. Solution polymerizations with 2,2′‐azobis(2‐amidinopropane) dihydrochloride (V‐50) in water at 60–70°C gave soluble cyclopolymers which showed polyelectrolyte behavior in pure water. Intrinsic viscosities measured in 0.09M NaCl ranged from 0.45 to 2.45 dL/g. 1H‐ and 13C‐NMR spectra indicated high cyclization efficiencies. The ester groups of the tert‐butyl polymer were hydrolyzed completely in acid to give a polymer with zwitterionic character. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 901–907, 1999  相似文献   

13.
Iron(III) complexes [Fe( L )( L′ )(NO3)]—in which L is phenyl‐N,N‐bis[(pyridin‐2‐yl)methyl]methanamine ( 1 ), (anthracen‐9‐yl)‐N,N‐bis[(pyridin‐2‐yl)methyl]methanamine ( 2 ), (pyreny‐1‐yl)‐N,N‐bis[(pyridin‐2‐yl)methyl]methanamine ( 3 – 5 ), and L′ is catecholate ( 1 – 3 ), 4‐tert‐butyl catecholate ( 4 ), and 4‐(2‐aminoethyl)‐benzene‐1,2‐diolate ( 5 )—were synthesized and their photocytotoxic properties examined. The five electron‐paramagnetic complexes displayed a FeIII/FeII redox couple near ?0.4 V versus a saturated calomel electrode (SCE) in DMF/0.1 m tetrabutylammonium perchlorate (TBAP). They showed unprecedented photocytotoxicity in red light (600–720 nm) to give IC50≈15 μM in various cell lines by means of apoptosis to generate reactive oxygen species. They were ingested in the nucleus of HeLa and HaCaT cells in 4 h, thereby interacting favorably with calf thymus (ct)‐DNA and photocleaving pUC19 DNA in red light of 785 nm to form hydroxyl radicals.  相似文献   

14.
3‐Nitrobenzanthrone is a powerful bacterial mutagen and carcinogen to mammals. To obtain precise information on DNA‐adduct formation by 3‐nitrobenzanthrone, a number of DNA adducts, including N‐(2′‐deoxyguanosin‐8‐yl)‐3‐aminobenzanthrone ( 13 a ), 2‐(2′‐deoxyguanosin‐N2‐yl)‐3‐aminobenzanthrone ( 14 a ), N‐(2′‐deoxyadenosin‐8‐yl)‐3‐aminobenzanthrone ( 15 a ), 2‐(2′‐deoxyadenosin‐N6‐yl)‐3‐aminobenzanthrone ( 16 a ), and their N‐acetylated counterparts 13 b , 14 b , 15 b , and 16 b were synthesized by palladium‐catalyzed aryl amination of the corresponding nucleoside and bromobenzanthrone derivatives. Among these DNA adducts, DNA adducts 13 a , 13 b , 14 a , 14 b , and 16 a were identified in the reaction mixture of nucleosides (2′‐deoxyguanosine, 2′‐deoxyadenosine, or DNA) with N‐acetoxy‐3‐aminobenzanthrone or N‐acetyl‐N‐acetoxy‐3‐aminobenzanthrone, both of which are recognized as activated metabolites of 3‐nitrobenzanthrone. The formation of these multiple DNA adducts may help explain the potent mutacarcinogenicity of 3‐nitrobenzanthrone.  相似文献   

15.
Copolymerization of ornithine‐ and lysine‐derived N‐propargylamides, N‐α‐tert‐butoxycarbonyl‐N‐δ‐fluorenylmethoxycarbonyl‐L ‐ornithine N′‐propargylamide ( 1 ), N‐α‐tert‐butoxycarbonyl‐N‐ε‐fluorenylmethoxycarbonyl‐L ‐lysine N′‐propargylamide ( 2 ), N‐α‐fluorenylmethoxycarbonyl‐N‐δ‐tert‐butoxycarbonyl‐L ‐ornithine N′‐propargylamide ( 3 ), and N‐α‐fluorenylmethoxycarbonyl‐N‐ε‐tert‐butoxycarbonyl‐L ‐lysine N′‐propargylamide (4) with dipropargyl adipate was carried out using (nbd)Rh+6‐C6H5B?(C6H5)3] as a catalyst in THF to obtain polymer gels in 80–93% yields. The gels adsorbed N‐benzyloxycarbonyl L ‐alanine, N‐benzyloxycarbonyl L ‐alanine methyl ester, and (S)‐(+)‐1‐phenyl‐1,2‐ethanediol preferably than the corresponding optical isomers. The order of chiral discrimination was poly( 1 ) > poly( 4 ) > poly( 2 ), poly( 3 ) gels. The fluorenylmethoxycarbonyl groups of the gels could be partly removed by piperidine treatment, leading to increase of adsorptivity but decrease of chiral recognition ability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4175–4182, 2008  相似文献   

16.
N‐(3‐Ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 1–4 and N‐(6‐ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 5–8 were prepared by coupling either 3‐ferrocenylnaphthalene‐2‐carboxylic acid or 6‐ferrocenylnaphthalene‐2‐carboxylic acid to the dipeptide ethyl esters GlyGly(OEt) (1, 5), AlaGly(OEt) (2, 6), GlyPhe(OEt) (3, 7) and GlyLeu(OEt) (4, 8), using the standard N‐(3‐dimethylaminopropyl)‐N'‐ethylcarbodiimide hydrochloride, 1‐hydroxybenzotriazole protocol. Electrospray ionization mass spectrometry (ESI‐MS) and laser desorption ionization mass spectrometry (LDI‐MS) were employed in conjunction with tandem mass spectrometry in the analysis of N‐(3‐ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 1–4 and N‐(6‐ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 5–8. Radical cations, [M]+? and [M + H]+ species were both observed in the mass spectra. Intense sodium [M + Na]+ and potassium [M + K]+ adducts were also present. An important diagnostic ion at m/z [M–65]+ was observed in both the MS and MS/MS spectra of the N‐(3‐ferrocenyl‐2‐naphthoyl) dipeptide derivatives. Sequence‐specific ions were generally not observed in the MS/MS spectra of the N‐(3‐ferrocenyl‐2‐naphthoyl) series due to formation of the diagnostic [M–65]+ ion. Sequence‐specific ions were observed in the MS/MS spectra of the N‐(6‐ferrocenyl‐2‐naphthoyl) dipeptide esters with charge retention on the derivatized N‐terminal of the dipeptide. Both series of compounds could be successfully analyzed by MALDI without the use of a matrix (LDI). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Amino acid‐derived novel norbornene derivatives, N,N′‐(endo‐bicyclo[2.2.1] hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐alanine methyl ester (NBA), N,N′‐(endo‐bicyclo[2.2.1]hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐leucine methyl ester (NBL), N,N′‐(endo‐bicyclo[2.2.1]hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐phenylalanine methyl ester (NBF) were synthesized and polymerized using the Grubbs 2nd generation ruthenium (Ru) catalyst. Although NBA, NBL, and NBF did not undergo homopolymerization, they underwent copolymerization with norbornene (NB) to give the copolymers with Mn ranging from 5200 to 38,100. The maximum incorporation ratio of the amino acid‐based unit was 9%, and the cis contents of the main chain were 54–66%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5337–5343, 2006  相似文献   

18.
Three new alkaloids, 2′‐Oβ‐D ‐glucopyranosyl‐11‐hydroxyvincoside lactam ( 1 ), 22‐O‐demethyl‐22‐Oβ‐D ‐glucopyranosylisocorynoxeine ( 2 ), and (4S)‐corynoxeine N‐oxide ( 3 ) were isolated from the leaves of Uncaria rhynchophylla, together with four known tetracyclic oxindole or indole alkaloids, isocorynoxeine N‐oxide ( 4 ), rhynchophylline N‐oxide ( 5 ), isorhynchophylline N‐oxide ( 6 ), and dihydrocorynantheine ( 7 ), and an indole alkaloid glycoside, strictosidine ( 8 ). The structures of 1 – 3 were elucidated by spectroscopic methods including UV, IR, ESI‐TOF‐MS, 1D‐ and 2D‐NMR, as well as CD experiments. The activity assay showed that 8 (IC50=8.3 μM ) exhibited potent inhibitory activity on lipopolysaccharide(LPS)‐induced nitrogen monoxide (NO) release in N9 microglia cells. However, only weak inhibitory activities were observed for 1 – 7 (IC50>100 μM for 1 – 6 or >30 μM for 7 ).  相似文献   

19.
Reaction of N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide), C20H18F2N4O2, ( LF ), with zinc chloride and mercury(II) chloride produced different types and shapes of neutral coordination complexes, namely, dichlorido[N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide)‐κ2N,O]zinc(II), [ZnCl2(C20H18F2N4O2)], ( 1 ), and dichlorido[N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide)‐κ4O,N,N′,O′]mercury(II), [HgCl2(C20H18F2N4O2)], ( 2 ). The organic ligand and its metal complexes are characterized using various techniques: IR, UV–Vis and nuclear magnetic resonance (NMR) spectroscopies, in addition to powder X‐ray diffraction (PXRD), single‐crystal X‐ray crystallography and microelemental analysis. Depending upon the data from these analyses and measurements, a typical tetrahedral geometry was confirmed for zinc complex ( 1 ), in which the ZnII atom is located outside the bis(benzhydrazone) core. The HgII atom in ( 2 ) is found within the core and has a common octahedral structure. The in vitro antibacterial activities of the prepared compounds were evaluated against two different bacterial strains, i.e. gram positive Bacillus subtilis and gram negative Pseudomonas aeruginosa bacteria. The prepared compounds exhibited differentiated growth‐inhibitory activities against these two bacterial strains based on the difference in their lipophilic nature and structural features.  相似文献   

20.
In N,N,N′,N′‐tetraethyl‐N′′‐(4‐fluorobenzoyl)phosphoric triamide, C15H25FN3O2P, (I), and N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis(4‐methylpiperidin‐1‐yl)phosphoric triamide, C19H28F2N3O2P, (II), the C—N—C angle at each tertiary N atom is significantly smaller than the two P—N—C angles. For the other new structure, N,N′‐dicyclohexyl‐N′′‐(2‐fluorobenzoyl)‐N,N′‐dimethylphosphoric triamide, C21H33FN3O2P, (III), one C—N—C angle [117.08 (12)°] has a greater value than the related P—N—C angle [115.59 (9)°] at the same N atom. Furthermore, for most of the analogous structures with a [C(=O)NH]P(=O)[N(C)(C)]2 skeleton deposited in the Cambridge Structural Database [CSD; Allen (2002). Acta Cryst. B 58 , 380–388], the C—N—C angle is significantly smaller than the two P—N—C angles; exceptions were found for four structures with the N‐methylcyclohexylamide substituent, similar to (III), one structure with the seven‐membered cyclic amide azepan‐1‐yl substituent and one structure with an N‐methylbenzylamide substituent. The asymmetric units of (I), (II) and (III) contain one molecule, and in the crystal structures, adjacent molecules are linked via pairs of N—H...O=P hydrogen bonds to form dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号