首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of 2,2‐dimethyl‐5‐nitroso‐1,3‐dioxan‐5‐yl benzoate, C13H15NO5, (I), 2,2‐dimethyl‐5‐nitroso‐1,3‐dioxan‐5‐yl 4‐chlorobenzoate, C13H14ClNO5, (II), and 5‐nitroso‐1,3‐dioxan‐5‐yl 4‐chlorobenzoate, C11H11NO5, (III), have been determined in order to gain insight into the conformational preference of α‐benzoyloxynitroso. Unfavourable 1,3‐diaxial interactions force (I) and (II) to crystallize in the 2,5 twist‐boat conformation, whereas compound (III), lacking this destabilizing interaction, crystallizes in the chair conformation.  相似文献   

2.
4‐(5‐oxo‐1,2,4‐triazol‐3‐yl)‐sydnones 11 and 4‐(4‐arylamino‐5‐oxo‐1,2,4‐triazol‐3‐yl)‐sydnones 13 have been obtained from a‐chloroformylarylhydrazine hydrochloride 2 . Moreover, the intermediates, including 3, 4 , 9 and 10 , in this study are synthetically informative and valuable. It is also noteworthy that three reactants, 1, 2 and sydnonecarbaldehydes, were prepared from sydnone derivatives and their fragments. The oxidative cyclizations of sydnonecarbaldehyde semicarbazones 9 and carbazones 10 with two different oxidizing agents (Cu(ClO4)2 and Fe(ClO4)3) have been extensively examined. The reaction time and the yields of cyclizations were affected by the substituents of semicarbazones 9 and carbazones 10.  相似文献   

3.
The title compound, C16H23N5O3S, ethyl 5-amino-1-(5‘-methyl-1‘-t-butyl-4‘-pyrazolyl)carbonyl-3-methylthio-1H-pyrazole-4-carboxylate (5) has been synthesized by the treatment of ethyl 2-cyano-3,3-dimethylthioacrylate with 1-t-butyl-5-methyl-4-hydrazinocarbonylpyrazole (4) in refluxed ethanol. The possible mechanism of the above reaction was also discussed. The results of biological test show that the title compound has fungicidal and plant growth regulation activities.  相似文献   

4.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

5.
This study describes, for the first time, the generation of a SF5‐substituted ester enolate from benzyl SF5‐acetate under soft enolization conditions, which in turn participates in aldol addition reactions in high yield. The reaction was applied in the synthesis of 3‐SF5‐quinolin‐2‐ones, 3‐SF5‐quinolines, and 3‐SF5‐pyridin‐2‐ones, none of which have previously been reported. To provide guidelines for their use in drug discovery, the physicochemical properties of these building blocks were determined and compared with those of their CF3‐ and t‐Bu‐analogues.  相似文献   

6.
This study describes, for the first time, the generation of a SF5‐substituted ester enolate from benzyl SF5‐acetate under soft enolization conditions, which in turn participates in aldol addition reactions in high yield. The reaction was applied in the synthesis of 3‐SF5‐quinolin‐2‐ones, 3‐SF5‐quinolines, and 3‐SF5‐pyridin‐2‐ones, none of which have previously been reported. To provide guidelines for their use in drug discovery, the physicochemical properties of these building blocks were determined and compared with those of their CF3‐ and t‐Bu‐analogues.  相似文献   

7.
A one‐pot synthesis of pyrrolo[1,2‐a]quinolin‐1‐ones has been developed from the reactions of 5‐hydroxy‐1‐arylpyrrolidin‐2‐ones with 1,3‐dicarbonyl compounds under the promotion of H3PO4/P2O5 or HOAc/H2SO4. The pyrrolo[1,2‐a]quinolin‐1‐ones are formed by two‐step reactions, that is, the coupling of N‐acyliminium ion intermediates produced from 5‐hydroxy‐1‐arylpyrrolidin‐2‐ones with 1,3‐dicarbonyls and subsequent Friedel–Crafts reactions of the resulting ketone with the aryl ring.  相似文献   

8.
Stereoselective synthesis of 5‐[2‐(guanin‐9‐yl)‐ and 5‐[2‐(2‐aminopurin‐9‐yl)ethyl]‐2‐D‐ribo‐(1′,2′,3′,4′‐tetrahydroxybutyl)‐1,3‐dioxane, 2‐5, as potential prodrugs of penciclovir, has been accomplished in six steps from readily available 2,3,4,5‐tetra‐O‐acetyl‐aldehydo‐D‐ribose ( 6 ) and the 1,3‐diol 7 . It has been demonstrated that the use of boron trifluoride diethyl etherate (BF3·Et2O) in dichloromethane along with excess anhydrous copper(II) sulfate was crucial for the efficient formation of cyclic acetal 8 . In addition, the chromatographic separation of cis and trans isomers of the cyclic acetal at the bromide stage 10 was feasible, which was requisite for the successful stereoselective synthesis of the ribosyl derivatives 2–5 .  相似文献   

9.
An efficient method for the synthesis of N‐alkylated 2‐(4‐substituted‐1H‐1,2,3‐triazol‐1‐yl)‐1H‐indole‐3‐carbaldehyde has been developed starting from oxindole and indole using Huisgen's 1,3‐dipolar cycloaddition reaction of organic azides to alkynes. The effect of catalysts and solvent on these reactions has been investigated. Among all these conditions, while using CuSO4·5H2O, DMF was found to be the best system for this reaction. It could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of halides, azides, and alkynes. The Huisgen's 1,3‐dipolar cycloaddition reaction was performed using CuSO4·5H2O in DMF with easy work‐up procedure.  相似文献   

10.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

11.
12.
2,4,8‐Trialkyl‐3‐thia‐1,5‐diazabicyclo[3.2.1]octanes have been obtained by the regioselective and stereoselective cyclocondensation of 1,2‐ethanediamine with aldehydes RCHO (R═Me, Et, Prn, Bun, Pentn) and H2S at molar ratio 1:3:2 at 0°C. The increase in molar ratio of thiomethylation mixture RCHO–H2S (6:4) at 40°C resulted in selective formation of bis‐(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)ethanes. Cyclothiomethylation of aliphatic α,ω‐diamines with aldehydes RCHO (R═Me, Et) and H2S at molar ratio 1:6:4 and at 40°С led to α,ω‐bis(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)alkanes. Stereochemistry of 2,4,8‐trialkyl‐3‐thia‐1,5‐diazabicyclo[3.2.1]octanes have been determined by means of 1H and 13С NMR spectroscopy and further supported by DFT calculations at the B3LYP/6‐31G(d,p) level. The structure of α,ω‐bis(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)alkanes was confirmed by single‐crystal X‐ray diffraction study.  相似文献   

13.
Mol­ecules of 1‐acetyl‐3‐ferrocenyl‐5‐methyl‐1H‐pyrazole, [Fe(C5H5)(C11H11N2O)], form a centrosymmetric dimer generated by a combination of one C—H⋯π(pyrazole) and one C—H⋯π(cyclo­penta­dienyl) inter­action. The dimers are linked by C—H⋯π inter­actions, involving the pyrazole rings as acceptors, into layers parallel to (10). Mol­ecules of 1‐acetyl‐5‐ferrocenyl‐3‐(2‐pyrid­yl)‐1H‐pyrazole, [Fe(C5H5)(C15H12N3O)], are linked by C—H⋯O inter­actions into a chain running in the [010] direction. Two chains of this type passing through each unit cell are connected by O⋯π(pyridyl) inter­actions into an [010] double chain.  相似文献   

14.
A convenient synthis for 4‐substituted and 3,4‐disubstituted 1,7‐naphthyridine‐2(1H)‐thiones 7 has been developed. The method is based on the electrocyclic reaction of 4‐(1‐arylalk‐1‐enyl)‐3‐isothiocyanatopyridines 6 , generated in situ by the treatment of the respective isocyanides 5 with S8 in the presence of a catalytic amount of selenium. The isocyanides 5 can be easily prepared from commercially available pyridin‐3‐amine by conventional organic reactions.  相似文献   

15.
Three title compounds 4a—4c have been synthesized by the cyclodehydration of 1’-benzylidine-4’-(3β-substituted-5α-cholestane-6-yl)thiosemicarbazones 2a—2c with thioglycolic acid followed by the treatment with cold conc. H2SO4 in dioxane. The compounds 2a—2c were prepared by condensation of 3β-substituted-5α-cholestan- 6-one-thiosemicarbazones 1a—1c with benzaldehyde. These thiosemicarbazones 1a—1c were obtained by the reaction of corresponding 3β-substituted-5α-cholestan-6-ones with thiosemicarbazide in the presence of few drops of conc. HCl in methanol. The structures of the products have been established on the basis of their elemental, analytical and spectral data.  相似文献   

16.
Synthesis of ethyl 5‐amino‐4‐cyano‐1‐phenyl‐1H‐pyrazole‐3‐carboxylate 5 has been achieved via abnormal Beckmann rearrangement of o‐chloroaldehyde 1 . Reaction of o‐aminocarbonitrile 5 with concentrated H2SO4 furnished expected o‐aminocarboxamide pyrazole 6 . Key intermediates o‐aminocarbonitrile 5 and o‐aminocarboxamide 6 were successfully utilized for the synthesis of pyrazolopyrimidine derivatives. The replacement of Cl in o‐chlorocarbonitrile 3 with secondary amine furnished new synthon 13 , which was further used for the synthesis of polysubstituted heterocycles. The obtained new products were well characterized by IR, 1H and 13C NMR, and mass spectra.  相似文献   

17.
The crystal structures of the proton‐transfer compounds of ferron (8‐hydroxy‐7‐iodoquinoline‐5‐sulfonic acid) with 4‐chloroaniline and 4‐bromoaniline, namely 4‐chloroanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7ClN+·C9H5INO4S·H2O, and 4‐bromoanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7BrN+·C9H5INO4S·H2O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen‐bonded cations, anions and water molecules which are extended into a three‐dimensional framework structure through centrosymmetric R22(10) O—H...N hydrogen‐bonded ferron dimer interactions.  相似文献   

18.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

19.
1,3‐Dipentafluorophenyl‐2,2,2,4,4,4‐hexazido‐1,3‐diaza‐2,4‐diphosphetidine ( 1 ) was synthesized by the reaction of [(C6F5)NPCl3]2 with trimethylsilyl azide in CH2Cl2 and characterized by multinuclear NMR and vibrational spectroscopy. The molecular structure of the compound was determined by single‐crystal X‐ray structure analysis. [(C6F5)NP(N3)3]2 crystallizes in the monoclinic space group P21/n with a = 9.6414(2), b = 7.4170(1) and c = 15.9447(4) Å, β = 94.4374(9)°, with 2 formula units per unit cell. The bond situation in [(C6F5)NP(N3)3]2 has been studied on the basis of NBO analysis. The antisymmetric stretching vibration of the azide groups is discussed. The structural diversity of 1 and 1,3‐diphenyl‐2,2,2,4,4,4‐hexazido‐1,3‐diaza‐2,4‐diphosphetidine in solution and in the solid state depending on the aryl substituent at the nitrogen atom is discussed.  相似文献   

20.
The title compound, C58H64S8, has been prepared by Pd‐catalysed direct C—H arylation of tetrathienonaphthalene (TTN) with 5‐hexyl‐2‐iodothiophene and recrystallized by slow evaporation from dichloromethane. The crystal structure shows a completely planar geometry of the TTN core, crystallizing in the monoclinic space group P21/c. The structure consists of slipped π‐stacks and the interfacial distance between the mean planes of the TTN cores is 3.456 (5) Å, which is slightly larger than that of the comparable derivative of tetrathienoanthracene (TTA) with 2‐hexylthiophene groups. The packing in the two structures is greatly influenced by both the aromatic core of the structure and the alkyl side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号