首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In poly[[diaquaoxido[μ3‐trioxidoselenato(2−)]vanadium(IV)] hemihydrate], {[VO(SeO3)(H2O)2]·0.5H2O}n, the octahedral V(H2O)2O4 and pyramidal SeO3 building units are linked by V—O—Se bonds to generate ladder‐like chains propagating along the [010] direction. A network of O—H...O hydrogen bonds helps to consolidate the structure. The O atom of the uncoordinated water molecule lies on a crystallographic twofold axis. The title compound has a similar structure to those of the reported phases [VO(OH)(H2O)(SeO3)]4·2H2O and VO(H2O)2(HPO4)·2H2O.  相似文献   

2.
Two new complexes [Sm(o‐NBA)3bipy]2·2H2O ( 1 ) and [Sm(o‐BrBA)3bipy]2·2H2O ( 2 ) (where o‐NBA is o‐nitrobenzoic acid, o‐BrBA is o‐bromobenzoic acid, and bipy is 2,2′‐bipyridine) were prepared and characterized by elemental analysis, IR, UV, and molar conductance, respectively. The thermal decomposition behaviors of the two complexes were investigated by means of TG–DTG and IR techniques. The thermal decomposition kinetics was studied by using advanced double equal‐double steps method, nonlinear integral isoconversional method, and nonlinear differential isoconversional method. The kinetic parameters of the second‐step process for the two complexes were obtained, respectively. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 607–616, 2008  相似文献   

3.
Two new transition metal dicyanamide complexes [Co2(tppz)(dca)4]·CH3CN ( 1 ) [tppz=tetra(2‐pyridyl)pyrazine, dca=dicyanamide] and [Co(tptz)(dca)(H2O)](dca) ( 2 ) [tptz=2,4,6‐tri(2‐pyridyl)‐1,3,5‐triazine] were synthesized and characterized by single crystal X‐ray diffraction analysis. In 1 each cobalt(II) atom is coordinated to three dca anions and one tppz molecule to form a distorted octahedral geometry, the neigbour two cobalt(II) atoms are bridged by one tppz ligand to form a dimer, then the cobalt(II) atoms in each dimer are joined together to form a ladder chain structure. In 2 the coordination geometry around the central metal is also distorted octahedral, each cobalt(II) atom is coordinated by two dca anions, one tptz molecule and one water ligand to form a cationic part, and the cationic part is linked with the free dca anions via the electrostatic attraction to give an infinite chain structure. Magnetic susceptibility measurement in the range of 2–300 K indicates that there are antiferromagnetic couplings between adjacent metal ions in 1 (T>29 K, (=?9.78 K, C=4.92 cm3·K·mol?1) and ferromagnetic couplings in 2 (T>150 K, (=7.97 K, C=2.59 cm3·K·mol?1) respectively.  相似文献   

4.
The prolonged photo‐Arbuzov reaction (3 weeks, Hg lamp) of 1,3,5‐trichloro‐benzene with a large excess of trimethyl phosphite (as a solvent) at 50° gives moderate yields of dimethyl (3,5‐dichlorophenyl)phosphonate ( 1 ; 14.5%), tetramethyl (5‐chloro‐1,3‐phenylene)bis[phosphonate] ( 2 ; 35.4%), and hexamethyl (benzene‐1,3,5‐triyl)tris[phosphonate] ( 3 ; 30.1%). The products can be separated by fractional distillation. Acid hydrolysis of the esters gives almost quantitative yields of the corresponding phosphonic acids 4 – 6 . Reduction of the esters 1 – 3 by LiAlH4 in tetrahydrofuran affords the primary phosphines (3,5‐dichlorophenyl)phosphine ( 7 ; 46.5%), (5‐chloro‐1,3‐phenylene)bis[phosphine] ( 8 ; 34.5%) and (benzene‐1,3,5‐triyl)tris[phosphine] ( 9 ; 25.2% yield). In the crude reduction products from 2 (preparation of 8 ) and from 3 (preparation of 9 ), (3‐chlorophenyl)phosphine and (1,3‐phenylene)bis[phosphine], respectively, are observed as by‐products. All compounds are characterized by standard analytical, spectroscopic, and (for 1, 7 , and 8 ) structural techniques. The arrangement of the molecules in the crystal structures of 7 and 8 suggest that H‐bonding between the primary arylphosphines is virtually insignificant for the packing of the components. This is in marked contrast to the importance of H‐bonding for the supramolecular chemistry of arylamines. The new primary polyphosphines and polyphosphonic acids are to be employed in the construction of extended arrays.  相似文献   

5.
[Pb(trz)(tfpb)(H2O)] ( 1 ) (trz and tfpb are the abbreviations of 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine and 4,4,4‐trifluoro‐1‐phenyl‐1,3‐butandionate, respectively) have been synthesized and characterized by elemental analysis and IR, 1H NMR, spectroscopy. The single‐crystal structure of 1 shows the coordination number of the Pb2+ ions is eight with three N‐donor atoms from a “trz” ligand and four O‐donors from the dionate ligand and one molecule of water. The supramolecular features in this complex are guided by lone pair activity and control of strong hydrogen bonds, weak directional intermolecular interactions and aromatic π‐π stacking interactions.  相似文献   

6.
The structures of orthorhombic bis[pentaammineaquacobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis[hexaamminecobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water molecules.  相似文献   

7.
Complexes of [Sm2(m‐ClBA)6(phen)2] · 2H2O and [Sm2(m‐BrBA)6(phen)2] · 2H2O (m‐ClBA = m‐chlorobenzoate, m‐BrBA = m‐bromobenzoate, and phen = 1,10‐phenanthroline) were prepared and characterized by elemental analysis and IR spectra. The thermal decomposition processes of the two complexes were studied by means of TG–DTG and IR techniques. Their thermal decomposition kinetics were investigated from the analysis of the TG and DTG curves by jointly using a new method proposed by us and a newly nonlinear isoconversional integral method. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 67–74, 2007  相似文献   

8.
Two supramolecular architectures, [Mn(3‐bpd)2(NCS)2(H2O)2]·2H2O ( 1 ) and {[Mn(bpe)(NCS)2(H2O)2]·(3‐bpd)·(bpe)·H2O}n ( 2 ) [bpe = 1,2‐bis(4‐pyridyl)ethylene and 3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene] have been synthesized and characterized by spectroscopic, elemental and single crystal X‐ray diffraction analyses. Compound 1 crystallizes in the monoclinic system, space group P21/c, with chemical formula C26H28Mn N10O4S2, a = 9.1360(6), b = 9.7490(6), c = 17.776(1) Å, β = 93.212(1)°, and Z = 2 while compound 2 crystallizes in the orthorhombic system, space group P212121, with chemical formula C38H36Mn1N10O3S2, a = 14.1902(6), b = 15.4569(7), c = 18.2838(8) Å, α = β = γ = 90°, and Z = 4. Structural determination reveals that the coordination geometry at Mn(II) in compound 1 or 2 is a distorted octahedral which consists of two nitrogen donors of two NCS?ligands, two oxygen donors of two water molecules, and two nitrogen donors of two 3‐bpd ligands for 1 and two dpe ligands for 2 , respectively. The two 3‐bpd ligands in 1 adopt a monodentate binding mode and the dpe in 2 adopts a bismonodentate bridging mode to connect the Mn(II) ions forming a 1D chain‐like coordination polymer. Both the π‐π stacking interactions between the coordinated and the free pyridyl‐based ligands and intermolecular hydrogen bonds among the coordinated and the crystallized water molecules and the free pyridyl‐based ligands play an important role in construction of these 3D supramolecular architectures.  相似文献   

9.
Controlled heating of single crystals of the previously reported [Köferstein & Robl (2007). Z. Anorg. Allg. Chem. 633 , 1127–1130] dihydrate {[Co(pht)(bpy)(H2O)2]·2H2O}n, (II) [where pht is phthalate (C8H4O4) and bpy is 4,4′‐bipyridine (C10H8N2)], produced a topotactic transformation into an unreported diaqua anhydrate, namely poly[diaqua(μ2‐benzene‐1,2‐dicarboxylato‐κ2O1:O2)(μ2‐4,4′‐bipyridine‐κ2N:N′)cobalt(II)], [Co(C8H4O4)(C10H8N2)(H2O)2]n, (IIa). The structural change consists of the loss of the two solvent water molecules linking the original two‐dimensional covalent substructures which are the `main frame' of the monoclinic P2/n hydrate (strictly preserved during the transformation), with further reaccommodation of the latter. The anhydrate organizes itself in the orthorhombic system (space group Pmn21) in a disordered fashion, where the space‐group‐symmetry restrictions are achieved only in a statistical sense, with mirror‐related two‐dimensional planar substructures, mirrored in a plane perpendicular to [100]. Thus, the asymmetric unit in the refined model is composed of two superimposed mirror‐related `ghosts' of half‐occupancy each. Similarities and differences with the parent dihydrate and some other related structures in the literature are discussed.  相似文献   

10.
The crystal structure of the title compound, nona­ammonium (arsenic decatungstido)(arsenic heptatungstido)­di­aqua‐μ‐hydroxo‐(hydroxy­arsenido)­di­zir­conium hexa­cosa­hydrate, which was ob­tained from the reaction of [NaAs4W40O140]27− with ZrIV, has been determined. The anionic complex consists of two hydroxyl‐bridged seven‐coordinate capped trigonal‐prismatic zirconium ions, which are bonded to an [AsW10O36]9− anion and to an [AsW7O28]11− anion that has two {AsOH}2+ capping units. The asymmetric unit contains half of the complex, with one crystallographically independent Zr atom. Crystallographic m symmetry imposed by the monoclinic C2/m space group gives rise to the asymmetric unit comprising half of the complex with one crystallographically independent Zr atom.  相似文献   

11.
The crystal structure of the bimetallic cyanide‐bridged title complex, tri­aqua‐1κ3O‐μ‐cyano‐1:2κ2N:C‐penta­cyano‐2κ5C‐tetrakis(N,N‐di­methyl­form­amide)‐1κ4O‐chromium(III)­prase­odymium(III) monohydrate, was obtained by single‐crystal X‐ray diffraction. The central praseodymium(III) ion is eight‐coordinate, arranged in a square antiprism, while the chromium(III) ion is six‐coordinate, oriented octahedrally. Molecules in the crystal lattice are held together by a network of hydrogen bonds.  相似文献   

12.
Bi(NO3)3 reacts with cucurbit[8]uril, (Q8), in 3M HNO3 to give the title complex whose structure includes three discrete Bi complexes: [{Bi(NO3)(H2O)5}2(Q8)]4+ (CN of Bi = 9, both NO3 and cucurbit[8]uril are bidentate), [Bi(NO3)5]2— (CN of Bi = 10, all NO3 are bidentate), and [Bi(NO3)3(H2O)4] (CN of Bi = 10, all NO3 are bidentate).  相似文献   

13.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

14.
Rare‐Earth‐Metal Coordination Polymers: Syntheses and Crystal Structures of Three New Glutarates, [Pr2(Glu)3(H2O)4] · 10.5H2O, [Pr(Glu)(H2O)2]Cl, and [Er(Glu)(GluH)(H2O)2] The new rare‐earth dicarboxylates [Pr2(Glu)3(H2O)4] · 10.5H2O ( 1 ), [Pr(Glu)(H2O)2]Cl ( 2 ) and [Er(Glu)(GluH)(H2O)2] ( 3 ) were obtained from the reactions of glutaric acid with PrCl3·6H2O and Er(OH)3, respectively. The crystal structures were determined by single‐crystal X‐ray diffraction. [Pr2(Glu)3(H2O)4] · 10,5H2O crystallizes in the orthorhombic space group Pnma (no. 62) with a = 871.7(4), b = 3105.0(9), c = 1308.3(9) pm and Z = 4. The crystals of [Pr(Glu)(H2O)2]Cl are monoclinic (I2/a; no. 15) with a = 786.2(1), b = 1527.6(2) c = 801.2(1) pm, β = 99.78(1)° and Z = 4. [Er(Glu)(GluH)(H2O)2] crystallizes in the monoclinic space group P21/a (no. 14) with lattice parameters of a = 882.4(1), b = 1375.3(2), c = 1267.4(2) pm, β = 107.13(1)° and Z = 4. The rare‐earth cations have the coordination numbers 10 ( 1 ), 8 + 1 ( 2 ) and 9 ( 3 ). The individual polyhedra are connected to chains and further to sheets in 1 and 2 and to double chains in 3 . Only in the water‐rich compound 1 there are channels that contain crystal water molecules. It, therefore, has a considerably lower density than 2 and 3 .  相似文献   

15.
Light‐yellow single crystals of the mixed‐valent mercury‐rich basic nitrate Hg8O4(OH)(NO3)5 were obtained as a by‐product at 85 °C from a melt consisting of stoichiometric amounts of (HgI2)(NO3)2·2H2O and HgII(OH)(NO3). The title compound, represented by the more detailed formula HgI2(NO3)2·HgII(OH)(NO3)·HgII(NO3)2·4HgIIO, exhibits a new structure type (monoclinic, C2/c, Z = 4, a = 6.7708(7), b = 11.6692(11), c = 24.492(2) Å, β = 96.851(2)°, 2920 structure factors, 178 parameters, R1[F2 > 2σ(F2)] = 0.0316) and is made up of almost linear [O‐HgII‐O] and [O‐HgI‐HgI‐O] building blocks with typical HgII‐O distances around 2.06Å and a HgI‐O distance of 2.13Å. The Hg22+ dumbbell exhibits a characteristic Hg‐Hg distance of 2.5079(7) Å. The different types of mercury‐oxygen units form a complex three‐dimensional network exhibiting large cavities which are occupied by the nitrate groups. The NO3? anions show only weak interactions between the nitrate oxygen atoms and the mercury atoms which are at distances > 2.6Å from one another. One of the three crystallographically independent nitrate groups is disordered.  相似文献   

16.
The title compounds, poly­[bis(2,2′‐bi­pyridine)­bis(μ3‐hydrogen phosphato)­nitratodi‐μ2‐oxo‐dicopper(II)­vanadium dihydrate], [Cu2(VO2)(HPO4)2(NO3)(C10H8N2)2]·2H2O, (I), and poly­[bis(2,2′‐bi­pyridine)­bis(μ3‐hydrogen phosphato)­nitratodi‐μ2‐oxo‐dicopper(II)­vanadium phospho­ric acid solvate], [Cu2(VO2)(HPO4)2(NO3)(C10H8N2)2]·H3PO4, (II), were obtained by similar hydro­thermal methods but under different crystallization conditions. The trinuclear entity which serves as the basic unit in both structures presents two independent CuII ions immersed in similar square‐pyramidal N2O3 environments plus an octahedral VO6 core and is organized into a one‐dimensional polymer, which is essentially identical in the two structures. The compounds are stabilized by different solvates, viz. two crystallization water mol­ecules in (I) and a phospho­ric acid mol­ecule in (II), which provide the main structural differences through the diversity of interchain interactions in which they serve as bridges.  相似文献   

17.
[Rb2(H2O)2][Re3(μ-Cl)3Br7(H2O)2]2 · H2O, a Mixed Halide-Hydrate with the Anionic Dimer {[Re3(μ-Cl)3Br7(H2O)2]2 · H2O}2? [Rb2(H2O)2][Re3(μ-Cl)3Br7(H2O)2]2 · H2O crystallizes as dark redbrown single crystals from an hydrobromic-acid solution of ReCl3 and RbBr at 0°C. An important feature of the crystal structure (monoclinic, C2/c; a = 1494.61(8); b = 835.71(4); c = 3079.96(19) pm; β = 97.801(4)°; Vm = 573.9(4) cm3mol?1; R = 0.060; Rw = 0.038) is the connection of two anions [Re3(μ-Cl)3Br7(H2O)2]? via a water molecule to dimers, {[Re3(μ-Cl)3Br7(H2O)2]2 · H2O}2?. These dimeric units are contained in slabs that are stacked in the [001] direction and held together by Rb+ cations and crystal water.  相似文献   

18.
A novel La( III )‐Cu( II ) heterometallic coordination polymer {[LaCu2(NTA)2(4,4′‐bpy)(H2O)3]NO3·5H2O]n, where H3NTA denotes nitrilotriacetic acid and 4,4′‐bpy denotes 4, 4‐bipyridine, was synthesized and characterized by IR spectrum, elemental analysis and X‐ray diffraction. The complex crystallizes in the triclinic space group Pi with cell parameters a = 1.33710(10) nm, b = 1,44530(10) nm, c =1.0949(2) nm, α = 71.905(7)°, β = 74.327(7)°, γ = 64.427(9)°, V = 1.7912(4) nm3and Z = 2. It consists of heterometallic units, in which each La( II ) ion is coordinated in a distorted monocapped square antiprism by three oxygen atoms from water molecules and six carboxyl oxygen atoms from five NTA3? ions, and each Cu( I ) ion is coordinated by one nitrogen atom from 4,4′‐bpy and one nitrogen atom, three oxygen atoms from NTA3?. In the title complex, La( I ) ions and Cu( II ) ions are connected by the heterometallic bridging of NTA3?, constructing a two‐dimensional network structure along the [110]. And it is extended into an infinite three‐dimensional network structure by the formation of homometallic bridging of Cu‐4, 4′‐bpy‐Cu, exhibiting a certain inclusion ability.  相似文献   

19.
The reaction of the nitrates M(NO3)3·6H2O (M = La, Pr) and (H3O)2PtCl6 led to yellow single crystals of [M(NO3)2(H2O)6]2[PtCl6]·2H2O (M = La, Pr) (monoclinic, P21/c, Z = 2, La/Pr: a = 697.4(3)/695.5(1), b = 1654.5(1)/1652.5(2), c = 1317.7(6)/1318.5(3) pm, β = 93.97°(7)/93.93°(2), Rall = 0.0169/0.0659) while the reaction of M(NO3)3·5H2O (M = Gd, Dy) and (H3O)2PtCl6 yielded yellow single crystals of [M(NO3)(H2O)7][PtCl6]·4H2O (monoclinic, P21/n, Z = 4, Gd/Dy: a = 838.72(3)/838.40(2), b = 2131.98(6)/2139.50(7), c = 1142.63(3)/1143.10(3) pm, β = 95.670(4)/95.698(3), Rall = 0.0475/0.0337). The crystal structures consist of octahedral [PtCl6]2? anions and complex [M(NO3)2(H2O)6]2+ and [M(NO3)(H2O)7]2+ cations, respectively. The thermal decomposition of both types of compounds leads via various steps to elemental platinum and the oxide chlorides MOCl (M = La, Pr, Gd, Dy).  相似文献   

20.
The product from reaction of lanthanum chloride heptahydrate with salicylic acid and thioproline, [La(Hsal)2•(tch)]•2H2O, was synthesized and characterized by IR, elemental analysis, molar conductance, thermogravimatric analysis and chemistry analysis. The standard molar enthalpies of solution of LaCl3•7H2O (s), [2C7H6O3 (s)], C4H7NO2S (s) and [La(Hsal)2•(tch)]•2H2O (s) in a mixed solvent of absolute ethyl alcohol, dimethyl sulfoxide (DMSO) and 3 mol•L-1 HCl were determined by calorimetry to be [LaCl3•7H2O (s), 298.15 K]=(-102.36±0.66) kJ•mol-1, [2C7H6O3 (s), 298.15 K]=(26.65±0.22) kJ•mol-1, [C4H7NO2S (s), 298.15 K]=(-21.79±0.35) kJ•mol-1 and {[La(Hsal)2•(tch)]•2H2O (s), 298.15 K}=(-41.10±0.32) kJ•mol-1. The enthalpy change of the reaction LaCl3•7H2O (s)+2C7H6O3 (s)+C4H7NO2S (s)=[La(Hsal)2•(tch)]•2H2O (s)+3HCl (g)+5H2O (l) (Eq. 1) was determined to be =(41.02±0.85) kJ•mol-1. From date in the literature, through Hess’ law, the standard molar enthalpy of formation of [La(Hsal)2•(tch)]•2H2O (s) was estimated to be {[La(Hsal)2•(tch)]•2H2O (s), 298.15 K}=(-3017.0±3.7) kJ•mol-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号