首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The model morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide (1) reacts with phenacyl bromides to afford N4‐(5‐aryl‐1,3‐oxathiol‐2‐yliden)‐2‐phenylquinazolin‐4‐amines (4) or N4‐(4,5‐diphenyl‐1,3‐oxathiol‐2‐yliden)‐2‐phenyl‐4‐aminoquinazoline ( 5 ) by a thermodynamically controlled reversible reaction favoring the enolate intermediate, while the 4‐[4‐aryl‐5‐(2‐phenylquinazolin‐4‐yl)‐1,3‐thiazol‐2‐yl]morpholine ( 8 ) was produced by a kinetically controlled reaction favoring the C‐anion intermediate. 1H nmr, 13C nmr, ir, mass spectroscopy and x‐ray identified compounds ( 4 ), ( 5 ) and ( 8 ).  相似文献   

2.
A novel series of 4‐(4‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)phenyl)‐2‐substitutedthiazole derivatives ( 8a‐l) have been synthesized by [3 + 2] cycloaddition reaction of 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole with substituted benzyl azide in aqueous DMF. Starting compounds 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole ( 6a‐d ) were synthesized by reaction of 4‐(2‐substitutedthiazol‐4‐yl)benzaldehyde with Ohira‐Bestmann reagent in methanol. The structures of these novel triazole‐thiazole clubbed derivatives were confirmed by the spectral analysis. The title compounds ( 8a‐l ) were tested for antimycobacterial activity against Mycobacterium tuberculosis H37Ra active and dormant (MTB, ATCC 25177) and antimicrobial activity against standard Gram‐positive bacteria, Staphylococcus aureus (NCIM 2602) and Bacillus subtilis (NCIM 2162), and Gram‐negative bacteria, Escherichia coli (NCIM 2576) and Pseudomonas flurescence (NCIM 2059). Compounds 8a , 8b , 8c , and 8h reported good activity against B subtilis, compounds 8a , 8b , and 8c showed good activity against S aureus, and compound 8b showed good activity against dormant M tuberculosis H37Rv strain. Compounds 8b and 8c found more potent against Gram positive and dormant M tuberculosis H37Rv strains. These novel triazole‐thiazole clubbed analogues found to be a capable leads for further optimization and development.  相似文献   

3.
The reactions of 2‐amino‐4,5‐dihydro‐3‐furancarbonitriles 1a‐d with α,β‐unsaturated carbonyl compounds in the presence of sodium ethoxide (0.1 equivalent) gave the corresponding Michael adducts 2a‐d , 3a‐d and 4a‐d. Compounds 2a‐d and 3a‐c reacted with sodium alkoxide (1 equivalent) to yield the corresponding 7a‐alkoxyhexahydrofuro[2,3‐b]pyridines 5a‐d, 6a‐d, 7a‐c and 8a‐c . Treatment of 5a‐d, 6a‐d, 7a‐c and 8a‐c with potassium tert‐butoxide produced the corresponding dihydrofuro[2,3‐b]pyridines 9a‐d and 10a‐c . The reaction of 4a‐c with sodium ethoxide (1 equivalent) afforded the corresponding dihydro‐furo[2,3‐b]pyridines 11a‐c .  相似文献   

4.
4‐Aminopyrazole‐3‐ones 4b, e, f were prepared from pyrazole‐3‐ones 1b‐d in a four‐step reaction sequence. Reaction of the latter with methyl p‐toluenesulfonate gave 1‐methylpyrazol‐3‐ones 2b‐d . Compounds 2b‐d were treated with aqueous nitric acid to give 4‐nitropyrazol‐3‐ones 3b‐d. Reduction of compounds 3b‐d by catalytic hydrogenation with Pd‐C afforded the 4‐amino compounds 4b, e, f. Using similar reaction conditions, nitropyrazole‐3‐ones derivatives 2c, d were reduced into aminopyrazole‐3‐ones 5e, f. 4‐Iodopyrazole‐3‐ones 7a, 7c and 8 were prepared from the corresponding pyrazol‐3‐ones 2a, 2c and 6 and iodine monochloride or sodium azide and iodine monochloride.  相似文献   

5.
The four new sesquiterpenoids 1 – 4 , and the new 2‐(2‐phenylethyl)‐4H‐chromen‐4‐one (=2‐(2‐phenylethyl)‐4H‐1‐benzopyran‐4‐one) derivative 5 , together with the two known sesquiterpenoids 6 and 7 , the five known chromenones 8 – 12 , and 1‐hydroxy‐1,5‐diphenylpentan‐3‐one ( 13 ), were isolated from a 70% MeOH extract of Aquilaria malaccensis agarwood chips. Their structures were elucidated on the basis of comprehensive spectral analyses and comparison with literature data.  相似文献   

6.
A simple and efficient method has been described for the synthesis of acetyl and iodo derivatives of 4‐hydroxy‐6‐phenyl‐6H‐pyrano[3,2‐c ]pyridine‐2,5‐diones 1 and 4‐hydroxy‐1‐phenylpyridin‐2(1H )‐ones 5 . Compounds 1 with phenyl and alkyl substituent at C(7) and C(8), respectively, can be easily acetylated by refluxing in a mixture of acetic acid and polyphosphoric acid to give 3‐acetyl‐4‐hydroxy‐6‐phenyl‐6H‐pyrano[3,2‐c ]pyridine‐2,5‐diones 2 in excellent yields. Compounds 1 and 5 can be iodinated with iodine and anhydrous sodium carbonate in boiling dioxane to give 4‐hydroxy‐3‐iodo‐6‐phenyl‐6H‐pyrano[3,2‐c ]pyridine‐2,5‐diones 3 and 4‐hydroxy‐3‐iodo‐1‐phenylpyridin‐2(1H )‐ones 6 , respectively, in good yields. The structures were confirmed using infrared, nuclear magnetic resonance , and elemental analysis.  相似文献   

7.
2‐[(Disubstituted‐methylene)‐hydrazino] benzoic acid phenacylesters 2a‐2d , prepared from anthranilic acid phenacylester 1 , were unsuccesfully tried as starting materials for the synthesis of N‐amino‐3‐hydroxy‐2‐phenyl‐4(1H)‐quinolinone 8 . The desired compound 8 was prepared by cyclization of N‐acetyl as well as N‐benzoyl‐hydrazinobenzoic acid phenacylester 6a or 6b in polyphosphoric acid to afford N‐acylamino‐3‐hydroxy‐2‐phenyl‐4(1H)‐quinolinone 7a or 7b , respectively. Surprisingly, the acyl group was resistant to attack by both hydrochloric acid as well as sodium hydroxide solution. It could be removed by boiling the compounds 7a or 7b respectively in 50% sulphuric acid to afford the the target compound 8 .  相似文献   

8.
The reaction of 2‐chloro‐4,5‐dihydroimidazole ( 5 ) with 2‐aminobenzohydrazides 6a–e led to the formation of 2‐amino‐N′‐(imidazolidin‐2‐ylidene)benzohydrazides as zwitterions 7a–e , which on treatment with carbon disulfide in the presence of triethylamine afforded 3‐(imidazolidin‐2‐ylideneamino)‐2‐thioxo‐2,3‐dihydroquinazolin‐4(1H)‐ones 8a–e . Compounds 8a–d were further converted into the corresponding 3‐(imidazolidin‐2‐ylideneamino)quinazoline‐2,4(1H,3H)‐diones 9a–d using hydrogen peroxide–sodium hydroxide solution. The structures of the compounds prepared were established by elemental analyses, IR and NMR spectra as well as X‐ray crystallographic analyses of 7e and 9a .  相似文献   

9.
A series of 2‐alkylthio‐4‐oxo‐3‐quinazolineacetonitriles 4 and 2‐alkylthio‐4‐oxothieno[3,2‐d]pyrimidine‐3‐acetonitriles 8 was prepared. Upon treatment with sodium hydride, compounds 4 and 8 react to give 2‐amino‐4,9‐dihydro‐9‐oxopyrrolo[2,1‐b]quinazoline‐1‐carbonitriles 9 and 6‐amino‐4,9‐dihydro‐9‐oxopyrrolo[1,2‐a]thieno[3,2‐d]pyrimidine‐7‐carbonitriles 10 , respectively. The transformation of compounds 4 and 8 to the tricyclic aminonitriles 9 and 10 involves a dimerization step followed by a pyrrole cyclization. The tert‐butyl ester derivatives 4d and 8d upon treatment with sodium hydride underwent a Thorpe‐Ziegler cyclization to provide enaminoesters of fused 1,3‐thiazines ( 16 and 17 , respectively) as major products.  相似文献   

10.
Ethyl 7‐amino‐3‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐aryl‐5H‐thiazolo[3,2‐a]pyrimidine‐6‐carboxylate was hydrolyzed with an ethanolic sodium hydroxide and the sodium salt thus formed underwent cyclization with acetic anhydride to afford 2‐methyl‐7‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐arylthiazolo[3,2‐a]pyrimido[4,5‐d]oxazin‐4(5H)‐one. This compound was transformed to related heterocyclic systems via its reaction with various reagents. The biological activity of the prepared compounds was tested against Gram positive and Gram negative bacteria as well as yeast‐like and filamentous fungi. They revealed in some cases excellent biocidal properties.  相似文献   

11.
The structures of three salts of 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate with alkali metals (Na, K and Rb) are related to their luminescence properties. The Rb salt, rubidium(I) 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate, Rb+·C8HN4O2, is isomorphous with the previously reported potassium salt. For the Na compound, sodium(I) 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate dihydrate, Na+·C8HN4O2·2H2O, two independent sodium ions, located on inversion centers, are coordinated by four water molecules each and additionally by two cyano groups for one and two carbonyl groups for the other. The luminescence spectra in solution are unaffected by the nature of the cation but vary strongly with the dielectric constant of the solvent. In the solid state, the emission maxima vary with structural features; the redshift of the maximum luminescence varies inversely with the distance between the stacked anions.  相似文献   

12.
In the present study, new 1,2,4‐triazoles, 1,3,4‐thiadiazoles, and acylthiosemicarbaz‐ides derived from 4‐(4‐chlorophenylsulfonyl)benzoic acid hydrazide were synthesized and screened for their antimicrobial and analgesic activities. Acylthiosemicarbazides 2–4 were synthesized by a reaction of 4‐(4‐chlorophenyl‐sulfonyl)benzoic acid hydrazide 1 with different arylisothiocyanates.4,5‐Disubstituted‐2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐thiones 5–7 and 2,5‐disubstituted‐1,3,4‐thiadiazoles 8–10 were obtained by dehydrative cyclization of corresponding acylthiosemicarbazide derivatives 2–4 in basic media (8% aqueous sodium hydroxide) and in acidic media (sulfuric acid or phosphorous oxychloride), respectively. The structures of the newly synthesized compounds have been confirmed on the basis of elemental analysis and spectral studies (IR, 1H NMR, 13C NMR, MS). Their antimicrobial activities against some bacteria and yeasts were investigated. The analgesic activity of all compounds was performed with two pharmacological tests: the writhing test induced with acetic acid and hot‐plate test. The results showed that triazole 7 had the best antimicrobial activity against Bacillus cereus. In the chemical stimulus test, triazoles 6 and 7 were the most active compounds whereas in the hot‐plate test thiadiazoles 9 and 10 exhibited the highest analgesic activity.  相似文献   

13.
A series of poly[ω‐(4′‐methoxy‐biphenyl‐4‐oxy)alkyl‐1‐glycidylether]s were synthesized by chemically modifying the corresponding poly(ω‐bromoalkyl‐1‐glycidylether)s with the sodium salt of 4‐hydroxy‐4′‐methoxybiphenyl. New high‐molecular‐weight side‐chain liquid‐crystalline polymers were obtained with excellent yields and almost quantitative degrees of modification. They were all insoluble in THF and other common solvents. Characterization by 13C NMR confirmed that all the polymers had the expected structure. The liquid crystalline behavior of the polymers was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X‐ray diffraction studies. Polymers that had alkyl spacers with n = 2 and 4 were smectic C, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C again. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5998–6006, 2005  相似文献   

14.
2‐Aryl‐hydrazononitriles 3a , 3b , 3c were prepared by coupling 3‐ethylthio‐5‐cyanomethyl‐4‐phenyl‐1,2,4‐triazole ( 1 ) with diazonium salts 2a , 2b , 2c . Reacting 3a , 3b , 3c with both ethyl bromoacetate ( 4a ) and 4‐bromobenzyl bromide ( 4b ) in DMF, in the presence of K2CO3, at 80 °C for 3–4 h, gave the corresponding 4‐amino‐pyrazoles 6a , 6b , 6c , 6d , 6e , 6f . Diazotization of 6a , 6b , 6c , 6d , 6e , 6f , followed by reaction with NaN3, leads to the formation of 4‐azidopyrazoles 8a , 8b , 8c , 8d , 8e , 8f , a new heterocyclic ring system. Interestingly, fusion of 4‐azidopyrazoles 8d , 8e , 8f at temperature higher than their melting points with 5 °C for 2 min did not give the expected fused pyrazolo[4,3‐c]isoxazoles 9 but furnished instead the novel pyrazolo[4,3‐b]quinolinones 10a , 10b , 10c , in high yields.  相似文献   

15.
Fourteen novel N‐(substituted phenylcarbonylamino)‐4‐ethyl‐1,2,3,6‐tetrahydropyridines 9 were synthesized in fair to good yields. 4‐Ethylpyridine 5 reacted with O‐mesitylenesulfonylhydroxylamine (O‐MSH) 4 to furnish N‐amino‐4‐ethylpyridinium mesitylenesulfonate 6 . The reaction of 6 with substituted acid chlorides 7 gave the stable crystalline pyridinium ylides 8a‐8n . A sodium borohydride reduction of 8 in absolute ethanol furnished the target compounds N‐(substituted phenylcarbonylamino)‐4‐ethyl‐1,2,3,6‐tetrahydropyridines 9a‐9n .  相似文献   

16.
A series of N‐(3‐amino‐3,4‐dihydro‐4‐oxopyrimidin‐2‐yl)‐4‐chloro‐2‐mercapto‐5‐methylbenzenesulfonamide derivatives 10‐17 have been synthesized as potential anti‐HIV agents. The in vitro anti‐HIV‐1 activity of these compounds has been tested at the national Cancer Institute (Bethesda, MD), and the structure‐activity relationships are discussed. The selected N‐[3‐amino‐3,4‐dihydro‐6‐(tert‐butyl)‐4‐oxothieno[2,3‐e]pyrimidin‐2‐yl]‐4‐chloro‐2‐metcapto‐5‐methylbenzenesulfonamide ( 14 ) showed good anti‐HIV‐1 activity with 50% effective concentration (EC50) value of 15 μM and weak cytotoxic effect (IC50 = 106 μM).  相似文献   

17.
The title ester 1 reacted with hydrazine hydrate to give hydrazide 2 , which underwent intramolecular cyclization to yield 1‐amino‐7‐phenyl‐1H‐imidazo[1,2‐a]pyrimidine‐2,5‐dione ( 3 ) or took place in a substitution reaction with benzylamine to form N‐benzyl‐2‐(2‐benzylamino‐4‐oxo‐6‐phenyl‐4H‐pyrimidin‐3‐yl)‐acetamide ( 4 ). The reaction of ester 1 with benzylamine gave corresponding amide 7 , disubstituted derivative 4 or 1‐benzyl‐7‐phenyl‐1H‐imidazo[1,2‐a]pyrimidine‐2,5‐dione ( 8 ) depending on the reaction conditions.  相似文献   

18.
Under basic conditions 2,6‐bis(bromomethyl)‐4‐pyrone 8 reacts with tetraethylene glycol to yield the unexpected macrocycle 9 , which is related to the antibiotic Kjellmanianone 10 . We propose that this ring transformation proceeds via the cyclopropyl intermediate d (Scheme 2), which undergoes a ring opening reaction comparable to the Favorskii rearrangement. Also, 8 reacts with methanol/sodium methoxide to yield the 3(2H)‐furanone derivative 11 , the formation of which is suggested to proceed via the intermediate k with a carbenium‐oxonium‐ion subunit (Scheme 3). The structure of the 3(2H)‐furanone derivative was confirmed by X‐ray analysis.  相似文献   

19.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

20.
Nucleobase‐anion glycosylation of 2‐[(2‐methyl‐1‐oxopropyl)amino]imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐one ( 6 ) with 3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐α‐D ‐arabinofuranosyl bromide ( 8 ) furnishes a mixture of the benzoyl‐protected anomeric 2‐amino‐8‐(2‐deoxy‐2‐fluoro‐D ‐arabinofuranosyl)imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐ones 9 / 10 in a ratio of ca. 1 : 1. After deprotection, the inseparable anomeric mixture 3 / 4 was silylated. The obtained 5‐O‐[(1,1‐dimethylethyl)diphenylsilyl] derivatives 11 and 12 were separated and desilylated affording the nucleoside 3 and its α‐D anomer 4 . Similar to 2′‐deoxy‐2′‐fluoroarabinoguanosine, the conformation of the sugar moiety is shifted from S towards N by the fluoro substituent in arabino configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号