首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fully ordered structure is reported for the polymorph of triphenylsilanol–4,4′‐bipyridyl (4/1), 4C18H16OSi·C10H8N2, having Z′ = 4. The asymmetric unit contains four similar but distinct five‐molecule aggregates, in which the central bipyridyl unit is linked to two molecules of triphenylsilanol via O—H...N hydrogen bonds, with a further pair of triphenylsilanol molecules linked to the first pair via O—H...O hydrogen bonds. An extensive series of C—H...π(arene) hydrogen bonds links these aggregates into complex sheets. This structure is compared with a previously reported structure [Bowes, Ferguson, Lough & Glidewell (2003). Acta Cryst. B 59 , 277–286], which was based on an erroneous disordered structural model arising from a false direct‐methods solution with reference to a strong pseudo‐inversion centre.  相似文献   

2.
The synthesis of a number of new 2,2′‐bipyridine ligands functionalized with bulky amino side groups is reported. Three homoleptic polypyridyl ruthenium (II) complexes, [Ru(L)3]2+ 2(PF6?), where L is 4,4′‐dioctylaminomethyl‐2,2′‐bipyridine (Ru4a), 4,4′‐didodecylaminomethyl‐2,2′‐bipyridine (Ru4b) and 4,4′‐dioctadodecylaminomethyl‐2,2′‐bipyridine (Ru4c), have been synthesized. These compounds were characterized and their photophysical properties examined. The electronic spectra of three complexes show pyridyl π → π* transitions in the UV region and metal‐to‐ligand charge transfer bands in the visible region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The title compound, (C10H10N2S)[CuCl4], was obtained by the reaction of cupric chloride with pyridine‐4‐thiol in a mixture of aceto­nitrile and tetra­hydro­furan, suggesting that the desulfurization and coupling reactions of pyridine‐4‐thiol occurred in the presence of the Cu2+ ion. X‐ray diffraction analysis reveals the presence of one 4,4′‐thio­dipyridinium cation, H2bps2+, and one [CuCl4]2− anion. The cations interact with the anions via N—H⋯Cl hydrogen‐bonding interactions to form a closed `chair' conformation.  相似文献   

4.
The title complex, [CuCl2(C6H6N4S2)], has a flattened tetrahedral coordination. The CuII atom is located on a twofold rotation axis and is coordinated by two N atoms from a chelating 2,2′‐di­amino‐4,4′‐bi‐1,3‐thia­zole ligand and by two Cl atoms. Intramolecular hydrogen bonding exists between the amino groups of the 2,2′‐di­amino‐4,4′‐bi‐1,3‐thia­zole ligand and the Cl atoms. The intermolecular separation of 3.425 (1) Å between parallel bi­thia­zole rings suggests there is a π–π interaction between them.  相似文献   

5.
In the title compound, (C10H9N2)2[Pt(CN)6]·2C10H8N2 or [(Hbpy)+]2[Pt(CN)6]2−·2bpy, where bpy is 4,4′‐bipyridine, the Hbpy+ cations and bpy mol­ecules form a hydrogen‐bonded two‐dimensional cationic approximately square grid parallel to the (110) plane. The [Pt(CN)6]2− dianions reside in the cavities within this grid, with the nitrile N atoms forming weak hydrogen bonds with the CH groups in the cationic lattice.  相似文献   

6.
The title polymeric ladder complex, {[Cu2(C7H6NO2)2(C10H8N2)3(H2O)2](NO3)2·4H2O}n, has been synthesized and spectroscopically characterized. The polymeric nature of the compound involves two non‐equivalent 4,4′‐bipyridyl ligands acting as almost orthogonal bridges joining the metal coordination Jahn–Teller‐distorted octahedra, and forming ladders packed under the influence of hydrogen bonds involving the uncoordinated amino group of the p‐amino­­benzoate ligand, the NO3 anion and the water mol­ecules.  相似文献   

7.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

8.
Crystal structures are reported for four (2,2′‐bipyridyl)(ferrocenyl)boronium derivatives, namely (2,2′‐bipyridyl)(ethenyl)(ferrocenyl)boronium hexafluoridophosphate, [Fe(C5H5)(C17H15BN2)]PF6, (Ib), (2,2′‐bipyridyl)(tert‐butylamino)(ferrocenyl)boronium bromide, [Fe(C5H5)(C19H22BN3)]Br, (IIa), (2,2′‐bipyridyl)(ferrocenyl)(4‐methoxyphenylamino)boronium hexafluoridophosphate acetonitrile hemisolvate, [Fe(C5H5)(C22H20BN3O)]PF6·0.5CH3CN, (IIIb), and 1,1′‐bis[(2,2′‐bipyridyl)(cyanomethyl)boronium]ferrocene bis(hexafluoridophosphate), [Fe(C17H14BN3)2](PF6)2, (IVb). The asymmetric unit of (IIIb) contains two independent cations with very similar conformations. The B atom has a distorted tetrahedral coordination in all four structures. The cyclopentadienyl rings of (Ib), (IIa) and (IIIb) are approximately eclipsed, while a bisecting conformation is found for (IVb). The N—H groups of (IIa) and (IIIb) are shielded by the ferrocenyl and tert‐butyl or phenyl groups and are therefore not involved in hydrogen bonding. The B—N(amine) bond lengths are shortened by delocalization of π‐electrons. In the cations with an amine substituent at boron, the B—N(bipyridyl) bonds are 0.035 (3) Å longer than in the cations with a methylene C atom bonded to boron. A similar lengthening of the B—N(bipyridyl) bonds is found in a survey of related cations with an oxy group attached to the B atom.  相似文献   

9.
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000  相似文献   

10.
As part of a homologous series of novel polyfluorinated bipyridyl (bpy) ligands, the title compound, C16H14F6N2O2, contains the smallest fluorinated group, viz. CF3. The molecule resides on a crystallographic inversion centre at the mid‐point of the pyridine Cipso—Cipso bond. Therefore, the bpy skeleton lies in an anti conformation to avoid repulsion between the two pyridyl N atoms. Weak intramolecular C—H...N and C—H...O interactions are observed, similar to those in related polyfluorinated bpy–metal complexes. A π–π interaction is observed between the bpy rings of adjacent molecules and this is probably a primary driving force in crystallization. Weak intermolecular C—H...N hydrogen bonding is present between one of the CF3CH2– methylene H atoms and a pyridyl N atom related by translation along the [010] direction, in addition to weak benzyl‐type C—H...F interactions to atoms of the terminal CF3 group. It is of note that the O—CH2CF3 bond is almost perpendicular to the bpy plane.  相似文献   

11.
The title compound, poly[[[diaquacopper(II)]‐di‐μ‐4,4′‐bipyridyl] bis(3‐carboxy‐1‐benzofuran‐2‐carboxylate) pentahydrate], {[Cu(C10H8N2)2(H2O)2](C10H5O5)2·5H2O}n, crystallizes in a single‐framework architecture. It is composed of two‐dimensional square‐grid coordination networks of 1:2:2 copper–4,4′‐bipyridine–water units, wherein each copper ion coordinates equatorially to four bipyridyl units and axially to two water ligands. The polymeric nets are intercalated by layers of the benzofurandicarboxylic acid monoanions and additional water species. An extensive array of hydrogen bonds interlinks the various components of the structure. The Cu atom and the bipyridyl entities are located on axes of twofold rotation. This study confirms the preferred monoanionic nature of the benzofurandicarboxylic acid molecule. It reveals a rarely observed extended coordination polymer composed only of copper ions and bipyridyl linkers, and an interesting hydrogen‐bonding connectivity between the polymeric layers aided by the benzofurandicarboxylic acid and water components intercalated in the structure.  相似文献   

12.
This work investigates the photoinduced energy transfer from poly(N‐vinylcarbazole) (PVK), as a donor material, to fac‐(2,2′‐bipyridyl)Re(CO)3Cl, as a catalyst acceptor, for its potential application towards CO2 reduction. Photoluminescence quenching experiments reveal dynamic quenching through resonance energy transfer in solid donor/acceptor mixtures and in solid/liquid systems. The bimolecular reaction rate constant at solution–film interfaces for the elementary reaction of the excited state with the quencher material could be determined as 8.8(±1.4)×1011 L mol?1 s?1 by using Stern–Volmer analysis. This work shows that PVK is an effective and cheap absorber material that can act efficiently as a redox photosensitizer in combination with fac‐(2,2′‐bipyridyl)Re(CO)3Cl as a catalyst acceptor, which might lead to possible applications in photocatalytic CO2 reduction.  相似文献   

13.
A π‐conjugated polymer containing a dithiafulvene unit and a bipyridyl unit was prepared by cycloaddition polymerization of aldothioketene derived from 5,5′‐diethynyl‐2,2′‐bipyridine. Ultraviolet–visible (UV–vis) absorption spectra showed that the π‐conjugation system of the polymer expanded more effectively than that of a benzene analogue of poly(dithiafulvene) obtained from 1,4‐diethynylbenzene. Cyclic voltammetry measurements indicated that the dithiafulvene–bipyridyl polymer was a weaker electron‐donor polymer than the benzene analogue. These results supported the idea that the incorporation of the electron‐accepting bipyridyl moiety into conjugated poly(dithiafulvene) induced an intramolecular charge‐transfer (CT) effect between the units. Treatment of the dithiafulvene–bipyridyl polymer with bis(2,2′‐bipyridyl)dichlororuthenium (II) [Ru(bpy)2Cl2] afforded a ruthenium–polymer complex. A cyclic voltammogram of the complex showed broad redox peaks, which indicated electronic interaction between the dithiafulvene and tris(bipyridyl) ruthenium complex. The dithiafulvene–bipyridyl polymer formed CT complexes with 7,7,8,8‐tetracycanoquinodimethane (TCNQ) in dimethyl sulfoxide. The UV–vis absorption indicated that the resulting CT complex contained anion radical of TCNQ and partially charge‐transferred TCNQ. The polymer showed an unusually high electrical conductivity of 3.1 × 10?4 S/cm in its nondoped state due to the effective donor–acceptor interaction between the bipyridine unit and the dithiafulvene unit. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4083–4090, 2001  相似文献   

14.
The three‐dimensional (3D) coordination polymer [Zn6(btc)4(4,4′‐bipy)5]n ( 1 ) (btc = 1,2,4‐benzenetricarboxylate; 4,4′‐bipy = 4,4′‐bipyridine) has been prepared hydrothermally. The zinc(II) centers in 1 are bridged by btc ligands to form a trinuclear subunit, which is further linked by 4,4′‐bipy and btc ligands to construct the 3D coordination architecture. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The single‐crystal X‐ray structures of dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylate, C14H12N2O4, and the copper(I) coordination complex bis(dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylato‐κ2N,N′)copper(I) tetrafluoroborate, [Cu(C14H12N2O4)2]BF4, are reported. The uncoordinated ligand crystallizes across an inversion centre and adopts the anticipated anti pyridyl arrangement with coplanar pyridyl rings. In contrast, upon coordination of copper(I), the ligand adopts an arrangement of pyridyl donors facilitating chelating metal coordination and an increased inter‐pyridyl twisting within each ligand. The distortion of each ligand contrasts with comparable copper(I) complexes of unfunctionalized 2,2′‐bipyridine.  相似文献   

16.
A series of thermotropic polyesters, derived from 4,4′‐biphenol (BP), 3‐phenyl‐4,4′‐biphenol (MPBP), and 3,3′‐bis(phenyl)‐4,4′‐biphenol (DPBP), 4,4′‐oxybisbenzoic acid (4,4′‐OBBA), and other aromatic dicarboxylic acids as comonomers, were prepared by melt polycondensation and were characterized for their thermotropic liquid‐crystalline (LC) properties with a variety of experimental techniques. The homopolymer of BP with 4,4′‐OBBA and its copolymers with either 50 mol % terephthalic acid or 2,6‐naphthalenedicarboxylic acid had relatively high values of the crystal‐to‐nematic transition (448–460 °C), above which each of them formed a nematic LC phase. In contrast, the homopolymers of MPBP and DPBP had low fusion temperatures and low isotropization temperatures and formed nematic melts above the fusion temperatures. Each of these two polymers also exhibited two glass‐transition temperatures, which were associated with vitrified noncrystalline (amorphous) regions and vitrified LC domains, as obtained directly from melt polycondensation. As expected, they had higher glass‐transition temperatures (176–211 °C) than other LC polyesters and had excellent thermal stability (516–567 °C). The fluorescence properties of the homopolymer of DPBP with 4,4′‐OBBA, which was soluble in common organic solvents such as chloroform and tetrahydrofuran, were also included in this study. For example, it had an absorption spectrum (λmax = 259 and 292 nm), an excitation spectrum (λex = 258 and 292 nm with monitoring at 350 nm), and an emission spectrum (λem = 378 nm with excitation at 330 nm) in chloroform. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 141–155, 2002  相似文献   

17.
Reaction of 5,5′‐methylenedisalicylic acid (5,5′‐H4mdsa) with 4,4′‐bipyridine (4,4′‐bipy) and manganese(II) acetate under hydrothermal conditions led to the unexpected 2:3 binary cocrystal 4,4′‐methylenediphenol–4,4′‐bipyridine (2/3), C13H12O2·1.5C10H8N2 or (4,4′‐H2dhdp)(4,4′‐bipy)1.5, which is formed with a concomitant decarboxylation. The asymmetric unit contains one and a half 4,4′‐bipy molecules, one of which straddles a centre of inversion, and one 4,4′‐H2dhdp molecule. O—H...N interactions between the hydroxy and pyridyl groups lead to a discrete ribbon motif with an unusual 2:3 stoichiometric ratio of strong hydrogen‐bonding donors and acceptors. One of the pyridyl N‐atom donors is not involved in hydrogen‐bond formation. Additional weak C—H...O interactions between 4,4′‐bipy and 4,4′‐H2dhdp molecules complete a two‐dimensional bilayer supramolecular structure.  相似文献   

18.
A novel cadmium(II) coordination polymer, poly[[[bis­(4,4′‐bipyridine)cadmium(II)]‐μ3‐4,4′‐dicarboxy­biphenyl‐3,3′‐di­carboxyl­ato] 0.35‐hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′‐bipyridine (4,4′‐bpy) and biphenyl‐3,3′,4,4′‐tetra­car­boxylic acid (H4L) under hydro­thermal conditions. Each CdII atom lies at the centre of a distorted octa­hedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′‐bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxyl­ate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′‐bpy ligands form a ring dimer node, which links into an extended broad zonal one‐dimensional chain along the c axis.  相似文献   

19.
In the title compound, 2C10H14N4·3C6HF5O, one of the pentafluorophenol molecules resides on a mirror plane bisecting the O...F axis. The components aggregate by N—H...N, N—H...O and O—H...N hydrogen bonds involving equal disordering of the H atoms into molecular ensembles based on a 2:1 pyrazole–phenol cyclic pattern [O...N = 2.7768 (16) Å and N...N = 2.859 (2) Å], crosslinked into one‐dimensional columns via hydrogen bonding between the outer pyrazole groups and additional pentafluorophenol molecules. The latter yields a 1:1 pyrazole–phenol catemer with alternating strong O—H...N [2.5975 (16) Å] and weaker N—H...O [2.8719 (17) Å] hydrogen bonds. This is the first reported molecular adduct of a pentafluorinated phenol and a nitrogen base, and suggests the utility of highly acidic phenols and pyrazoles for developing hydrogen‐bonded cocrystals.  相似文献   

20.
For the first time, CEC was coupled with tris(2,2‐bipyridyl) ruthenium(II) ( Ru(bpy) electrochemiluminescence detection. Efficient CEC separations of proline, putrescine, spermidine and spermine were achieved when the pH of the mobile phase is in the range of 3.5–7.0. The optimum mobile phase for CEC separation is much less acidic than that for CZE separation, which matches better with the optimum pH for Ru(bpy) electrochemiluminescence detection and dramatically shortens the analysis time because of larger EOF at higher pH. The time for CEC separation of the polyamines is less than 12.5 min, which is about half as much as the time needed for CZE. The detection limits were 1.7, 0.2, and 0.2 μM for putrescine, spermidine, and spermine, respectively. The RSD of retention time and peak height of these polyamines were less than 0.85 and 6.1%, respectively. The column showed good long‐term stability, and the RSD of retention time is below 5% for 150 runs over one‐month use. The method was successfully used for the determination of polyamines in urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号