首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A free-vibration experiment was conducted to examine flow-induced vibration (FIV) characteristics of two identical circular cylinders in side-by-side arrangements at spacing ratio T (=T/D)=0.1–3.2, covering all possible flow regimes, where T is the gap spacing between the cylinders and D is the cylinder diameter. Each of the cylinders was two-dimensional, spring mounted, and allowed to vibrate independently in the cross-flow direction. Furthermore, an attempt to suppress flow-induced vibrations was undertaken by attaching flexible sheets at the rear stagnation lines of the cylinders. Based on the vibration responses of the two cylinders, four vibration patterns I, II, III and IV are identified at 0.1≤T<0.2, 0.2≤T≤0.9, 0.9<T<2.1 and 2.1≤T≤3.2, respectively. Pattern I is characterized by the two cylinders vibrating inphase, with the maximum amplitudes occurring at the same reduced velocity Ur=10.47 almost two times that (Ur=5.25) for an isolated cylinder. Pattern II features no vibration generated for either cylinder. Pattern III exemplifies the occurrence of the maximum vibration amplitude of a cylinder at a smaller Ur and that of the other cylinder at a higher Ur compared to its counterpart in an isolated cylinder. Pattern IV represents each cylinder response resembling an isolated cylinder response; the vibrations of the two cylinders are, however, coupled inphase or antiphase. Linking maximum vibration amplitudes to fluctuating lift forces acting on fixed cylinders reveals that fluid–structure interactions between two fixed cylinders and between two elastic cylinders are not the same, even though vibration is not significant. As such, while two fixed cylinders generate narrow and wide wakes at 0.2≤T<1.7, two elastic cylinders do the same for a longer range of T (0.2≤T<2.1). The flexible sheets effectively suppress FIV of the two cylinders in patterns III and IV, and reduce the vibration amplitude in pattern I. For the effectively controlled cases (patterns III and IV), the flexible sheet of each cylinder folds into a semicircle at the base, forming two free edges.  相似文献   

2.
This paper presents a numerical investigation of the three-dimensional flow around an in-line cylinder arrangement with up to twenty-five cylinders under confinement, with a subcritical Reynolds number, in the context of flow-induced vibrations. Flow characteristics and patterns, as well as the force coefficients of the cylinders and Strouhal numbers were evaluated numerically with the large eddy simulation approach and validated against previously published experimental data. Two values for both the transversal (T/D = 1.5 and 3) and longitudinal (L/D = 2 and 4) spacing ratios were considered and combined to generate four different arrangements. The velocity distributions obtained in the simulations were in good agreement with the experimental data. Fluctuations in the force coefficients were characterized for each arrangement and found to be directly proportional to the turbulence kinetic energy upstream of each cylinder. Depending on the flow pattern, certain rows are subjected to greater flow force fluctuations. The dominant frequency, expressed by the Strouhal number, was also mapped throughout the arrangements and its distribution was characterized according to the observed flow patterns. Although the spacing ratios have a combined effect, their separate influence on the general behavior and distribution of fluid forces could be identified, as these are linked to the flow regimes. This knowledge allowed for the contribution to an already existing in-line tube bundle classification, which is useful in the diagnosis of flow-induced vibrations and the design of heat exchangers and other industrial equipment.  相似文献   

3.
Laminar free convection heat transfer from two vertical arrays of five isothermal cylinders separated by flow diverters is studied experimentally using a Mach-Zehnder interferometer. The width of flow diverters is kept constant to two-cylinder diameters and the cylinders vertical center-to-center spacing is equal to three-cylinder diameter. Effect of the ratio of the horizontal spacing between two cylinder arrays to their diameter (Sh/D) on heat transfer from the cylinders is investigated for various Rayleigh numbers. The experiments are performed for Sh/D = 2-4, and the Rayleigh number based on the cylinder diameter ranging from 103 to 3 × 103. It is observed that for small Sh/D ratios, the flow diverters have a negative effect on the total rate of heat transfer from the arrays; while by increasing the horizontal center to center spacing, they tend to enhance the overall cooling rate of the array. Moreover, increasing Ra and Sh/D generally results in a higher average Nusselt number for each cylinder in the array.  相似文献   

4.
In the present study, the effect of Reynolds number (Re) on flow interference between two side-by-side stationary cylinders and the associated flow-induced forces are investigated using finite element method and wavelet analysis. The pitch ratio chosen is T/D=1.7, where T is the separation distance measured between cylinder centers and D is the diameter, and Re, based on the free-stream velocity and the diameter of the cylinder, is varied within the laminar flow regime, i.e., 60<Re<200. The method of continuous wavelet transform is used to analyze time-variant features of flow-induced forces in the time–frequency domain. Flow patterns in the form of vorticity plots are presented to demonstrate the underlying physics. It is found that flow interference initially occurs in the inner vortices shed from the two cylinders, and extends to the outer vortices with increasing Re. The flow behind two cylinders undergoes three regimes: Regime I—unbiased gap flow, Regime II—stable biased gap flow, and Regime III—unstable gap flow. Flow-induced forces show significant variations when the flow transits from one regime to another. In particular, during the transition from Regimes II to III, the forces not only increase by amplitude, but also change their nature from deterministic to random, and show some nonstationary features. This is shown to be caused by the amalgamation of inner and outer vortices behind the two cylinders when the flow interference extends from inner vortices to outer vortices. Whenever possible, the present results are compared with experimental measurements and theoretical predictions. The numerical simulations are consistent with these other results.  相似文献   

5.
This paper comprises an in-depth physical discussion of the flow-induced vibration of two circular cylinders in view of the time-mean lift force on stationary cylinders and interaction mechanisms. The gap-spacing ratio T/D is varied from 0.1 to 5 and the attack angle α from 0° to 180° where T is the gap width between the cylinders and D is the diameter of a cylinder. Mechanisms of interaction between two cylinders are discussed based on time-mean lift, fluctuating lift, flow structures and flow-induced responses. The whole regime is classified into seven interaction regimes, i.e., no interaction regime; boundary layer and cylinder interaction regime; shear-layer/wake and cylinder interaction regime; shear-layer and shear-layer interaction regime; vortex and cylinder interaction regime; vortex and shear-layer interaction regime; and vortex and vortex interaction regime. Though a single non-interfering circular cylinder does not correspond to a galloping following quasi-steady galloping theory, two circular cylinders experience violent galloping vibration due to shear-layer/wake and cylinder interaction as well as boundary layer and cylinder interaction. A larger magnitude of fluctuating lift communicates to a larger amplitude vortex excitation.  相似文献   

6.
The flow-induced vibrations of two elastically mounted circular cylinders subjected to the planar shear flow in tandem arrangement are studied numerically at Re=160. A four-step semi-implicit Characteristic-based split (4-SICBS) finite element method is developed under the framework of the fractional step method to cope with the vortex-induced vibration (VIV) problem. For the computational code verification, two benchmark problems are examined in the laminar region: flow-induced vibration of an elastically mounted cylinder having two degrees of freedom and past two stationary ones in tandem arrangement. Regarding the two-cylinder VIVs in shear flow, the computation is conducted with the cylinder reduced mass Mr=2.5π and the structural damping ratio ξ=0.0. The effects of some key parameters, such as shear rate (k=0.0, 0.05, 0.1), reduced velocity (Ur=3.0–18.0) and spacing ratio (Lx/D=2.5, 3.5, 4.5, 8.0), are demonstrated. It is observed that the shear rate and reduced velocity play an important role in the VIVs of both cylinders at various center-to-center distances. Additionally, in comparison with the single cylinder case, a further study indicated that the gap flow has a significant impact on such a dynamic system, leading it to be more complex. The results show that, the performances of ‘dual-resonant’ are discovered in the shear flow. A valley is formed in transverse oscillation amplitude of DC for each spacing ratio when Ur is about 6.0. For the X–Y trajectories of the circular cylinders, figure-eight, figure-O and oval shape are obtained. Finally, the interactions between cylinders are revealed, together with the wake-induced vibration (WIV) mechanism underlying the oscillation characteristics of both cylinders exposed to shear flow. Besides, the “T+P” wake pattern is discovered herein.  相似文献   

7.
Steady state two-dimensional free convection heat transfer from a horizontal, isothermal cylinder in a horizontal array of cylinders consists of three isothermal cylinders, located underneath a nearly adiabatic ceiling is studied experimentally. A Mach–Zehnder interferometer is used to determine thermal field and smoke test is made to visualize flow field. Effects of the cylinders spacing to its diameter (S/D), and cylinder distance from ceiling to its diameter (L/D) on heat transfer from the centered cylinder are investigated for Rayleigh numbers from 1500 to 6000. Experiments are performed for an inline array configuration of horizontal cylinders of diameters D = 13 mm. Results indicate that due to the nearly adiabatic ceiling and neighboring cylinders, thermal plume resulted from the centered cylinder separates from cylinder surface even for high L/D values and forming recirculation regions. By decreasing the space ratio S/D, the recirculation flow strength increases. Also, by decreasing S/D, boundary layers of neighboring cylinders combine and form a developing flow between cylinders. The strength of developing flow depends on the cylinders Rayleigh number and S/D ratio. Due to the developing flow between cylinders, the vortex flow on the top of the centered cylinder appears for all L/D ratios and this vortex influences the value of local Nusselt number distribution around the cylinder.Variation of average Nusselt number of the centered cylinder depends highly on L/D and the trend with S/D depends on the value of Rayleigh number.  相似文献   

8.
This paper presents a detailed investigation of Strouhal numbers, forces and flow structures in the wake of two tandem cylinders of different diameters. While the downstream cylinder diameter, D, was fixed at 25 mm, the upstream cylinder diameter, d, was varied from 0.24D to D. The spacing between the cylinders was 5.5d, at which vortices were shed from both cylinders. Two distinct vortex frequencies were detected behind the downstream cylinder for the first time for two tandem cylinders of the same diameter. The two vortex frequencies remained for d/D=1.0–0.4. One was the same as detected in the gap of the cylinders, and the other was of relatively low frequency and was ascribed to vortex shedding from the downstream cylinder. While the former, if normalized, declined progressively from 0.196 to 0.173, the latter increased from 0.12 to 0.203 with decreasing d/D from 1 to 0.24. The flow structure around the two cylinders is examined in the context of the observed Strouhal numbers. The time-averaged drag on the downstream cylinder also climbed with decreasing d/D, though the fluctuating forces dropped because vortices impinging upon the downstream cylinder decreased in scale with decreasing d/D.  相似文献   

9.
It is well known from a lot of experimental data that fluid forces acting on two tandem circular cylinders are quite different from those acting on a single circular cylinder. Therefore, we first present numerical results for fluid forces acting on two tandem circular cylinders, which are mounted at various spacings in a smooth flow, and second we present numerical results for flow-induced vibrations of the upstream circular cylinder in the tandem arrangement. The two circular cylinders are arranged at close spacing in a flow field. The upstream circular cylinder is elastically placed by damper-spring systems and moves in both the in-line and cross-flow directions. In such models, each circular cylinder is assumed as a rigid body. On the other hand, we do not introduce a turbulent model such as the Large Eddy Simulation (LES) or Reynolds Averaged Navier-Stokes (RANS) models into the numerical scheme to compute the fluid flow. Our numerical procedure to capture the flow-induced vibration phenomena of the upstream circular cylinder is treated as a fluid-structure interaction problem in which the ideas of weak coupling is taken into consideration.  相似文献   

10.
Two-degree-of-freedom vortex-induced vibrations (VIV) of a circular cylinder close to a plane boundary are investigated numerically. The Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the Arbitrary Lagrangian Eulerian (ALE) scheme with a k-ω turbulence model closure. The numerical model is validated against experimental data of VIV of a cylinder in uniform flow and VIV of a cylinder close to a plane boundary at low mass ratios. The numerical results of the vibration mode, vibration amplitude and frequency agree well with the experimental data. VIV of a circular cylinder close to a plane boundary is simulated with a mass ratio of 2.6 and gap ratios of e/D=0.002 and 0.3 (gap ratio is defined as the ratio of gap between the cylinder and the bed (e) to cylinder diameter (D)). Simulations are carried out for reduced velocities ranging from 1 to 15 and Reynolds numbers ranging from 1000 to 15 000. It is found that vortex-induced vibrations occur even if the initial gap ratio is as small as e/D=0.002, although reported research indicated that vortex shedding behind a fixed circular cylinder is suppressed at small gap ratios (e/D<0.3 or 0.2). It was also found that vibration amplitudes are dependant on the bouncing back coefficient when the cylinder hits the plane boundary. Three vortex shedding modes are identified according to the numerical results: (i) single-vortex mode where the vortices are only shed from the top of the cylinder; (ii) vortex-shedding-after-bounce-back mode; (iii) vortex-shedding-before-bounce-back mode. It was found that the vortex shedding mode depends on the reduced velocity.  相似文献   

11.
This study investigated the two-dimensional flow past two tandem circular or square cylinders at Re = 100 and D / d = 4–10, where D is the center-to-center distance and d is the cylinder diameter. Numerical simulation was performed to comparably study the effect of cylinder geometry and spacing on the aerodynamic characteristics, unsteady flow patterns, time-averaged flow characteristics and flow unsteadiness. We also provided the first global linear stability analysis and sensitivity analysis on the physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of the cylinder geometry and spacing on the characteristic quantities. Numerical results reveal that there is wake flow transition for both geometries depending on the spacing. The characteristic quantities, including the time-averaged and fluctuating streamwise velocity and pressure coefficient, are quite similar to that of the single cylinder case for the upstream cylinder, while an entirely different variation pattern is observed for the downstream cylinder. The global linear stability analysis shows that the spatial structure of perturbation is mainly observed in the wake of the downstream cylinder for small spacing, while moves upstream with reduced size and is also observed after the upstream cylinder for large spacing. The sensitivity analysis reflects that the temporal growth rate of perturbation is the most sensitive to the near-wake flow of downstream cylinder for small spacing and upstream cylinder for large spacing.  相似文献   

12.
Staggered arrays of short cylinders, known as pin?Cfins, are commonly used as a heat exchange method in many applications such as cooling electronic equipment and cooling the trailing edge of gas turbine airfoils. This study investigates the near wake flow as it develops through arrays of staggered pin fins. The height-to-diameter ratio was unity while the transverse spacing was kept constant at two cylinder diameters. The streamwise spacing was varied between 3.46 and 1.73 cylinder diameters. For each geometric arrangement, experiments were conducted at Reynolds numbers of 3.0e3 and 2.0e4 based on cylinder diameter and velocity through the minimum flow area of the array. Time-resolved flowfield measurements provided insight into the dependence of row position, Reynolds number, and streamwise spacing. Decreasing streamwise spacing resulted in increased Strouhal number as the near wake length scales were confined. In the first row of the bundle, low Reynolds number flows were mainly shear-layer-driven while high Reynolds number flows were dominated by periodic vortex shedding. The level of velocity fluctuations increased for cases having stronger vortex shedding. The effect of streamwise spacing was most apparent in the reduction of velocity fluctuations in the wake when the spacing between rows was reduced from 2.60 diameters to 2.16 diameters.  相似文献   

13.
The effect of free-stream turbulence on vortex-induced vibration of two side-by-side elastic cylinders in a cross-flow was investigated experimentally. A turbulence generation grid was used to generate turbulent incoming flow with turbulence intensity around 10%. Cylinder displacements in the transverse direction at cylinder mid-span were measured in the reduced velocity range 1.45<Ur0<12.08, corresponding to a range of Reynolds number (Re), based on the mean free-stream velocity and the diameter of the cylinder, between Re=5000–41 000. The focus of the study is on the regime of biased gap flow, where two cylinders with pitch ratio (T/D) varying from 1.17 to 1.90 are considered. Results show that the free-stream turbulence effect is to enhance the vortex-induced force, thus to restore the large-amplitude vibration associated with the lock-in resonance. However, the enhancement is significant at a different Strouhal number (St) for different pitch ratios. When the spacing between two cylinders is relatively small (1.17<T/D<1.50), the enhancement is significant at St≈0.1. When the spacing is increased, the Strouhal number at which the enhancement is significant shifts to St≈0.16. This enlarges the range of reduced velocity to be concerned. An energy analysis showed that free-stream turbulence feeds energy to the cylinder at multiple frequencies of vortex shedding. Therefore, the lock-in region is still of main concern when the approach flow is turbulent.  相似文献   

14.
The surface vorticity method (SVM), which is a fast and practical grid-free two-dimensional (2-D) method, and a fluid–structure interaction model incorporating the effects of cylinder motions and displacements is used to simulate the vortex-induced vibration of cylinder arrays at sub-critical Reynolds number Re=2.67×104. The SVM is found to be most suitable for simulating a 2-D cylinder row with large-amplitude vibrations where the vorticity field and the fluid forces of the cylinder row change drastically, and the effect of the stream on the transverse direction vibration is very significant. The fluidelastic instability of a flexible cylinder row at small pitch ratio is also investigated, and the critical reduced velocity of the cylinder row at a reduced damping parameter SG=1.29 is calculated, which is in good agreement with experimental and analytical results of the unsteady model. Vortex-induced vibration of a staggered cylinder array is simulated using different structural parameters. When the cylinders are relatively more flexible, the flow pattern changes dramatically and the fluid–structure interaction has a dominant impact on the flow field. Compared with grid-based methods, the grid-free SVM is a fast and practical method for the simulation of the FIV of cylinder arrays due to vortex shedding at sub-critical Reynolds numbers.  相似文献   

15.
Large-eddy simulations (LES) are used to investigate the modifications of wake dynamics and turbulence characteristics behind a circular cylinder placed near a wall for varying gap-to-diameter (G/D) ratios (where G signifies the gap between the wall and the cylinder, and D the cylinder diameter). The three-dimensional (3-D), time-dependent, incompressible Navier–Stokes equations with a dynamic subgrid-scale model are solved using a symmetry-preserving finite-difference scheme of second-order spatial and temporal accuracy. The immersed boundary (IB) method is employed to impose the no-slip boundary condition on the cylinder surface. Flow visualizations along with turbulence statistics are presented to gain insight into the flow structures that are due to interaction between the shear layers and the approaching boundary layer. Apart from the vortex shedding mechanism, the paper illustrates the physics involving the shear layer transition, stretching, breakdown and turbulence generation, either qualitatively or quantitatively, in the presence of a wall for a Reynolds number of Re=1440 (based on D and the inlet free-stream velocity U).  相似文献   

16.
This paper presents an experimental study of the flow around four circular cylinders arranged in a square configuration. The Reynolds number was fixed at Re=8000, the pitch-to-diameter ratio between adjacent cylinders was varied from P/D=2 to 5 and the incidence angle was changed from α=0° (in-line square configuration) to 45° (diamond configuration) at an interval of 7.5°. The flow field was measured using digital Particle Image Velocimetry (PIV) to examine the vortex shedding characteristics of the cylinders, together with direct measurement of fluid dynamic forces (lift and drag) on each cylinder using a piezoelectric load cell. Depending on the pitch ratio, the flow could be broadly classified as shielding regime (P/D≤2), shear layer reattachment regime (2.5≤P/D≤3.5) and vortex impinging regime (P/D≥4). However, this classification is valid only in the case that the cylinder array is arranged nearly in-line with the free stream (α≈0°), because the flow is also sensitive to α. As α increases from 0° to 45°, each cylinder experiences a transition of vortex shedding pattern from a one-frequency mode to a two-frequency mode. The flow interference among the cylinders is complicated, which could be non-synchronous, quasi-periodic or synchronized with a definite phase relationship with other cylinders depending on the combined value of α and P/D. The change in vortex pattern is also reflected by some integral parameters of the flow such as force coefficients, power spectra and Strouhal numbers.  相似文献   

17.
Flow-induced fluctuating lift (CLf) and drag (CDf) forces and Strouhal numbers (St) of a cylinder submerged in the wake of another cylinder are investigated experimentally for Reynolds number (Re)=9.7×103–6.5×104. The spacing ratio L (=L/D) between the cylinders is varied from 1.1 to 4.5, where L is the spacing between the cylinders and D is the cylinder diameter. The results show that CLf, CDf and St are highly sensitive to Re due to change in the inherent nature of the flow structure. How the flow structure is dependent on Re and L is presented in a flow structure map. Zdravkovich and Pridden (1977) observed a ‘kink’ in time-mean drag distribution at L≈2.5 for Re>3.1×104, but not for Re≤3.1×104. The physics is provided here behind the presence and absence of the ‘kink’ that was left unexplained since then.  相似文献   

18.
Direct measurements of the dynamic lift force acting on two tandem cylinders in cross-flow are performed in the presence and absence of acoustic resonance. The dynamic lift force is measured because it represents the integrated effect of the unsteady wake and therefore it is directly related to the dipole sound source generated by vortex shedding from the cylinder. Three spacing ratios inside the proximity interference region, L/D=1.75, 2.5 and 3 are considered. During the tests, the first transverse acoustic mode of the duct housing the cylinders is self-excited. In the absence of acoustic resonance, the measured dynamic lift coefficients agree with those reported in the literature. When the acoustic resonance is initiated, a drastic increase in the dynamic lift coefficient is observed, especially for the downstream cylinder. This can be associated with abrupt changes in the phase between the lift forces and the acoustic pressure. The dynamic lift forces on both cylinders are also decomposed into in-phase and out-of-phase components, with respect to the resonant sound pressure. The lift force components for the downstream cylinder are found to be dominant. Moreover, the out-of-phase component of the lift force on the downstream cylinder is found to become negative over two different ranges of flow velocity and to virtually vanish between these two ranges. Acoustic resonance of the first mode is therefore excited over two ranges of flow velocity separated by a non-resonant range near the velocity of frequency coincidence. It is therefore concluded that the occurrence of acoustic resonance is controlled by the out-of-phase lift component of the downstream cylinder, whereas the effect of the in-phase lift component is confined to causing small changes in the acoustic resonance frequency.  相似文献   

19.
Boundary layer wind tunnel tests were conducted to investigate the effects of different spacing parameters on the wind loading of ground and roof mounted solar arrays. On the ground mounted array the effect of lateral and longitudinal spacing between panels was investigated. On the roof mounted array the effect of array perimeter gap from the building edge was investigated. Based on the results obtained, the magnitude of force and moment coefficients on the ground mounted array decreased across panel rows as a result of sheltering effect from the neighboring upwind panels. The largest reduction of wind load coefficients was observed on the second row panels but the amount of reduction dropped quickly afterwards, becoming minimal after the fourth row. It was also observed that panels located in the outer array column could be subjected to relatively higher wind loads compared to panels located in the inner array columns. Increasing the lateral spacing between array columns was observed to have minimal effect on the force and moment coefficients. However, the wind load coefficients increased as the longitudinal spacing between panel rows was increased. The wind load coefficients on the roof mounted array decreased with increasing perimeter gap from the building edge.  相似文献   

20.
This paper presents results of a numerical study of vortex-induced vibrations of two side-by-side circular cylinders of different diameters in steady incompressible flow. The two-dimensional Reynolds-averaged Navier–Stokes equations with a SST kω turbulence model are solved using the Petrov–Galerkin finite element method and the Arbitrary-Lagrangian–Eulerian scheme. The diameter ratio of the two cylinders is fixed at 0.1 and the mass ratio of both cylinders is 5.0. Both cylinders are constrained to oscillate in the transverse direction only. The Reynolds number based on the large cylinder diameter and free stream velocity is fixed at 5000. The effects of the reduced velocities of the cylinders on the vibration amplitude and vortex shedding regimes are investigated. It is found that for the range of parameters considered, collision between the two cylinders is dependent on the difference of the reduced velocities of the cylinders. Presence of the small cylinder in the proximity of the large one appears to have significant effects on the vortex shedding regime and vibration amplitude of the large cylinder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号