首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of scanning tunneling microscopy (STM) investigation of controllable growth of C60 adsorption on a Bi(0001)/Si(111) surface are reported. With the use of UHV STM, it has been shown that the most favorable sites for the initial stage of C60 adsorption are the double steps and domain boundaries. At ∼1 monolayer C60 coverage, the modulation pattern caused by the epitaxial relation between C60 and Bi unit cells has been observed. An increase in the C60 coverage up to several monolayers results in the formation of a highly crystalline molecular film. The text was submitted by the authors in English.  相似文献   

2.
The morphology and atomic structures of C60 fullerene films on a Bi(0001)/Si(111)-7 × 7 surface and adsorption of fluorofullerene C60F x molecules on a Si(111)-7 × 7 surface have been studied by scanning tunneling microscopy/spectroscopy and low-energy electron microscopy under ultra high-vacuum conditions. It has been shown that initial nucleation of C60 islands on the surface of an epitaxial Bi film occurs on double steps and domain boundaries, while tunnel spectra do not exhibit any significant charge transfer to the lowest unoccupied molecular orbital states. Fluorofullerene molecules allow local (at the nanoscale level) modification of Si surface through local etching.  相似文献   

3.
We have used the Bi(0 0 0 1)/Si(1 1 1) template to grow highly ordered C60 epitaxial thin films and analyzed them using scanning tunneling microscopy and low-energy electron microscopy. The in situ low-energy electron microscope investigations show that the initial nucleation of the C60 islands on the surface takes place at surface defects, such as domain boundaries and multiple steps. The in-plane lattice parameters of this C60 film turns out to be the same as that of the bulk fcc(1 1 1) C60. The line-on-line epitaxial structure is realized in spite of a weak interaction between the C60 molecules and Bi(0 0 0 1) surface, while scanning tunneling spectroscopy indicates that there is a negligible charge transfer between the molecules and the surface.  相似文献   

4.
The dynamics of the adsorption and evolution of fluorinated C60F18 fullerene molecules on the Cu(001) surface are studied by real-time ultra-high vacuum scanning tunneling microscopy. Fluorinated fullerene molecules are shown to decompose with time on the Cu(001) surface transforming to C60 molecules. The decay rate depends on the initial molecular coverage. The rapid decay of fluorinated fullerene molecules is observed when the coverage is no higher than 0.2 single layers. As a result, two-dimensional islands consisting of pure C60 molecules are formed on the Cu(001) surface. 2D islands consisting of fluorinated fullerene molecules are formed when the initial molecular coverage is higher than 0.5 single layers. The molecules inside these islands also tend to decompose with time. It is found experimentally that fluorine atoms are removed completely from the initial C60F18 molecules adsorbed on the Cu(001) surface after 250 h when the initial molecular coverage is 0.6 single layers.  相似文献   

5.
The structure transformation occurring in fullerene film under bombardment by 50 keV C60+ cluster ions is reported. The Raman spectra of the irradiated C60 films reveal a new peak rising at 1458 cm−1 with an increase in the ion fluence. This feature of the Raman spectra suggests linear polymerization of solid C60 induced by the cluster ion impacts. The aligned C60 polymeric chains composing about 5–10 fullerene molecules have been distinguished on the film surface after the high-fluence irradiation using atomic force microscopy (AFM). The surface profiling analysis of the irradiated films has revealed pronounced sputtering during the treatment. The obtained results indicate that the C60 polymerization occurs in a deep layer situated more than 40 nm below the film surface. The deep location of the C60 polymeric phase indirectly confirms the dominant role of shock waves in the detected C60 phase transformation.  相似文献   

6.
The properties of C60 adsorbed on Cu(111) have been studied using low temperature scanning tunnelling microscopy and spectroscopy. In the electronic spectrum of the molecule, we observe features that can be assigned to molecular orbitals. The LUMO level is split into two states, as a consequence of the charge transfer from the substrate to the carbon cage. The data from the inelastic electron tunnelling spectroscopy reveal two peaks that can be assigned to the intramolecular vibrational modes of the C60 cage. We demonstrate also controlled manipulation of single molecules. The plot of the tip height, recorded during the manipulation process, indicates that the C60 is pushed along the surface. PACS 68.37.Ef; 73.61.Wp; 68.43.Pq; 82.37.GK; 68.43.-h  相似文献   

7.
The current work is dedicated to investigation of the interaction between self-assembled polar molecules of fullerene fluoride C60F18 with the chemically active surface Ni(100) under radiation and heat treatments. X-ray photoelectron spectroscopy is used in combination with quantum-chemical simulation. For the first time, the transformation of an as-deposited dielectric continuous 2D thin film to a 3D island-type assembly with molecular ordering within the islands is shown to take place. The degree of coverage of the Ni surface by C60F18 islands (0.6–0.7) and their height (~6 nm) are estimated. Quantum-chemical simulation shows that the chemisorption energy of the C60F18 molecule on the Ni surface equals ~6.6 eV and fluorine atoms are located at a distance of 1.9 Å above the Ni surface. The results of the investigation provide an opportunity to create nanoscale ordered structures with local changes in the work function.  相似文献   

8.
The structure and surface of thin coatings deposited via electron-beam dispersion of the C60 fullerite have been investigated using IR and Raman spectroscopy, mass spectroscopy, and atomic-force microscopy. It has been demonstrated that layers with different contents of the polymerized phase, crystals of the tetragonal polymer phase, and three-dimensional polymeric forms of the C60 fullerene are formed under the conditions providing for irradiation by secondary electrons in vacuum at a substrate temperature of 300 K.  相似文献   

9.
10.
Ab initio calculations were performed to obtain local energy extrema, including an effect of reagents, intermediates, and reaction products on the potential energy surface for the C9H7+O2 reaction, playing a significant role in oxidation of polycyclic aromatic hydrocarbons at combustion conditions. The final products, determined as a result of the calculations are styrenyl radical C8H7+CO2, ortho-vinyl phenyl radical C8H7+CO2 and 1-H-inden-1-one C9H6O+OH, which is predicted to be the prevailing reaction product.  相似文献   

11.
SiO x H y C z nanometric layers are deposited from hexamethyldisiloxane by atmospheric pressure microwave plasma torch on Si(100) substrates submitted to temperatures varying on the range [0 °C; 120 °C]. Atomic force microscopy (AFM) characterizations of samples grown at intermediate substrate temperatures (~30 °C) demonstrate a layer-by-layer growth (Frank van der Merwe growth) leading to smooth flat and compact films while films deposited at lower and higher substrates temperatures show an island-like growth (Volmer-Weber growth) generating a high surface roughness. Concomitantly, a detailed infrared spectroscopy analysis of the growing films evidences structural modifications due to changes in the bond types, Si-O-Si conformation and stoichiometry correlated with scanning electron microscopy and AFM characterizations. Then, deposition conditions and specific microstructure are selected with the aim of generating 3-dimensional SiO x H y C z nanostructure arrays on nanoindented Si (100) templates. The first results are discussed.  相似文献   

12.
A simple approach for preparing a thin film containing C60 derivative (C60-COOH) nanodomains, based on the mixed Langmuir–Blodgett (LB) film of C60-COOH and diacetylene acid (DA), is reported. From the observations of atomic force microscopy, it is found that many small domains in the mixed LB film are formed, which differ from the flat film of pure C60-COOH. Upon the photopolymerization of DA molecules in the mixed LB film, these nanodomains become much smaller and more homogeneous in size and distribution. PACS 68.37.Ps; 68.18.-g; 64.70.Nd; 68.47.Pe; 68.55.-a  相似文献   

13.
This paper reports on an atomic-force microscopy study of the surface of α-Al2O3 single crystals irradiated by Bi ions with energies of 710, 557, 269, and 151 MeV. The shape of the radiation defects produced by single ions was established to depend on the ionization energy loss. The threshold ionization density above which the surface topography is observed to change lies in the 27–35 keV/nm interval. Possible mechanisms of defect formation in the thermal-spike model, namely, a phase transition and the creation of thermoelastic stresses in the high-energy ion track, are considered.  相似文献   

14.
The reaction of C60, under ultrasonication, with various oxidants, such as 3-chloroperoxy benzoic acid (Fluka 99%), 4-methyl morpholine N-oxide (Aldrich 97%), chromium (VI) oxide (Aldrich 99.9%), and the oxone® monopersulfate compound, causes the oxidation of fullerenes at room temperature. The FAB-MS spectra and HPLC profile confirmed that the products of fullerene oxidation were [C60(O)n] (n=1~3 or n=1). C70 also reacted, under ultrasonication, with various oxidants, but the reaction rate of C70 was lower than that of C60.  相似文献   

15.
We report the first-principles Car-Parrinello molecular dynamics study of the behaviour of a single transition metal Ta atom on fullerene C60, at different temperatures, and for both neutral and charged clusters. We seek to characterise the motion of the lone Ta metal atom on the C60 surface, contrasting its behaviour both with that of three Ta atoms, as well as with a single alkali metal atom on the cage surface. Our earlier simulations on C60Ta3 had revealed that the Ta atoms on the surface of the fullerene are affected by a rather high mobility, and that the motion of these atoms is highly correlated due to Ta-atom-Ta-atom attraction. Earlier, experimental studies of a single metal atom (K, Rb) on the surface of a C60 molecule had led to the inference that at room temperature the metal atom skates freely over the surface, the first direct evidence for which was presented by us in earlier first principles molecular dynamical simulations.  相似文献   

16.
A molecular dynamics simulation of the low-energy interaction of C60 fullerenes and Cu1@C60, Cu6@C60, and Cu13@C60 endofullerenes with a Cu(100) surface was performed. The effects of a copper cluster encapsulated in a fullerene and of a fullerene’s translational motion and rotation energy on its penetration into a surface were investigated. It was shown that the presence of an encapsulated cluster has a positive effect on fullerene penetration into a surface with preservation of the fullerene’s structure. The optimal conditions for fullerene penetration into a copper crystal surface were determined.  相似文献   

17.
The effect of heating of the electronic subsystem on the thermal stability of C60 and C20 fullerenes and a (C20)2 cluster molecule is investigated theoretically. It is demonstrated that the excitation of electrons to upper energy levels in accordance with the Fermi-Dirac distribution function does not lead to a substantial change in the activation energy E a for decay of the C20 fullerene. The stability of the C60 fullerene and the (C20)2 cluster molecule likewise does not change radically. However, the inclusion of corrections associated with the finite sizes of the heat bath leads to the activation energy E a which is in better agreement with the calculated height of the potential barrier preventing the cluster decay.  相似文献   

18.
A series of new heterofullerides with compositions Rb2MC60, K2MC60, and KM2C60 (M = Mg, Be) have been synthesized. Measurements of the temperature dependences of the magnetic susceptibility in the temperature interval from 4.2 to 300 K reveal a superconducting transition in heterofullerides K2MgC60, KMg2C60, K2BeC60, and Rb2BeC60 at temperatures T c = 13–22 K. The electron states with uncompensated spin are studied by the electron paramagnetic resonance technique. The contributions of conduction electrons and localized electrons to the paramagnetic susceptibility are extracted.  相似文献   

19.
The low energy deposition of silver cluster cations with 561 (±5) atoms on a cold fullerene covered gold surface has been studied both by scanning tunneling microscopy and molecular dynamics simulation. The special properties of the C60/Au(111) surface result in a noticeable fixation of the clusters without a significant change of the cluster shape. Upon heating to room temperature we observe a flattening or shrinking of the cluster samples due to thermal activation. Similar changes were observed also for mass selected Ag clusters with other sizes. For comparison we also studied Ag islands of similar size, grown by low temperature deposition of Ag atoms and subsequent annealing. A completely different behavior is observed with much broader size distributions and a qualitatively different response to annealing.  相似文献   

20.
A semi-empirical molecular dynamics model is developed. The central collisions of C60+C60 and He@C60+He@C60 at different incident energies are investigated based on this model. It is found that the dimer structures have been produced at proper incident energies and these fullerene dimers could be formed by a self-assembly of C60 fullerene and He@C60. The He atom has a significant effect at higher incident energy and this embedded He atom can enhance the stability of the dimer structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号