首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet-rich plasma (PRP) contains growth factors that promote tissue regeneration. Previously, we showed that heparin-conjugated fibrin (HCF) exerts the sustained release of growth factors with affinity for heparin. Here, we hypothesize that treatment of skin wound with a mixture of PRP and HCF exerts sustained release of several growth factors contained in PRP and promotes skin wound healing. The release of fibroblast growth factor 2, platelet-derived growth factor-BB, and vascular endothelial growth factor contained in PRP from HCF was sustained for a longer period than those from PRP, calcium-activated PRP (C-PRP), or a mixture of fibrin and PRP (F-PRP). Treatment of full-thickness skin wounds in mice with HCF-PRP resulted in much faster wound closure as well as dermal and epidermal regeneration at day 12 compared to treatment with either C-PRP or F-PRP. Enhanced skin regeneration observed in HCF-PRP group may have been at least partially due to enhanced angiogenesis in the wound beds. Therefore, this method could be useful for skin wound treatment.  相似文献   

2.
Nowadays, there are still many challenges to skin regeneration. As a new type of skin substitute, hydrogel has emerging gradually with its excellent properties. However, it is still a challenge to combine with biological active agents to facilitate skin regeneration. Under the circumstance, we synthesized argininebased poly(ester amide)(Arg-PEA) and hyaluronic acid(HA-MA), and combined them into new hybrid hydrogels via photo-crosslinking. We found that the internal structure and physicochemical...  相似文献   

3.
《中国化学快报》2023,34(2):107528
Designing a multifunctional scaffold with osteogenic and angiogenic properties holds promise for ideal bone regeneration. Innovative scaffold was here constructed by immobilizing exosomes derived from human bone mesenchymal stem cells (hBMSCs) onto porous polymer meshes which developed by PLGA and Cu-based MOF (PLGA/CuBDC@Exo). The synthesized exosome-laden scaffold capable of providing a dual cooperative controllable release of bioactive copper ions and exosomes that promote osteogenesis and angiogenesis, thereby achieving cell-free bone regeneration. In vitro assay revealed the composite stent not only substantially upregulated the expression of osteogenic-related proteins (ALP, Runx2, Ocn) and VEGF in hBMSCs, but promoted the migration and tube formation of the human umbilical vein endothelial cells (HUVECs). In vivo evaluation further confirmed this scaffold dramatically stimulated bone regeneration and angiogenesis in critical-sized defects in rats. Altogether, this composite scaffold carrying therapeutic exosomes had an osteogenic-angiogenic coupling effect and offered a new idea for cell-free bone tissue engineering.  相似文献   

4.
The need for bioactive dressings increases with the population aging and the prevalence of chronic diseases. In contrast, there are very few dressings on the market which are designed to display a chosen bioactivity. In this context, we investigated the surface-functionalization of silicone wound dressing with bioactive peptides. One of the challenges was to avoid multistep grafting reactions involving catalysts, solvents or toxic reagents, which are not suitable for the fabrication of medical devices at an industrial scale. In the other hand, a covalent bonding was necessary to avoid the loss of the biological effect by progressive removal of the peptide in biological fluids generated by the wound. To solve these limitations, we developed a strategy allowing an easy and direct functionalization of silicone. This strategy relies on hybrid silylated bioactive peptides, which chemoselectively react with plasma-activated silicone surfaces. We synthesized three hybrid peptides with wound healing properties, which were grafted on commercially available silicone dressings Cerederm® and Mepitel®. Grafted dressings were evaluated in vitro and enabled a quicker scare recovery and extracellular matrix deposition with human dermal fibroblasts. These results were confirmed by in vivo studies showing an enhanced wound-healing of the pig skin. By this simple method, we transformed inert dressing into bioactive dressing which showed properties of wound healing.  相似文献   

5.
Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.  相似文献   

6.
Anti-infection and neovascularization at the wound site are two vital factors that accelerate diabetic wound healing. However, for a wound healing dressing, the two functions need to work at different sites(inner and outer), giving big challenges for dressing design. In this study, we fabricated a novel sodium alginate/chitosan(SA/CS) Janus hydrogel dressing by the assembly of SA hydrogel loaded with silver nanoparticles(Ag NPs) and CS hydrogel impregnated with L-arginine loaded sodium alginate ...  相似文献   

7.
《中国化学快报》2023,34(8):108125
As a representative of chronic wounds, the long-term high levels of oxidative stress and blood sugar in chronic diabetic wounds lead to serious complications, making them the biggest challenge in the research on wound healing. Many edible natural biomaterials rich in terpenes, phenols, and flavonoids can act as efficient antioxidants. In this study, okra extract was selected as the main component of a wound dressing. The okra extracts obtained via different methods comprehensively maintained the bioactivity of multiple molecules. The robust antioxidant properties of okra significantly reduced intracellular reactive oxygen species production, thereby accelerating the wound healing process. The results showed that okra extracts and their hydrogel dressings increased cell migration, angiogenesis, and re-epithelization of the chronic wound area, considerably promoting wound remodeling in diabetic rats. Therefore, okra-based hydrogels are promising candidates for skin regeneration and wider tissue engineering applications.  相似文献   

8.
Diabetic wounds (DWs) are characterized by prolonged inflammation, which poses a significant challenge for clinicians and researchers to promote healing. In this study, we fabricate L-Glutamic acid (LGA) loaded collagen/chitosan (COL-CS) composite scaffold for the accelerated healing of DW. The characterization outcomes of the composite scaffold revealed that a crosslinked scaffold holds optimum porosity, low matrix degradation, and sustained drug release in contrast to a non-crosslinked scaffold. In vitro, LGA composite scaffolds have not exhibited any toxicity on 3T3L1 cell lines. In vivo, the LGA composite scaffold has shown significantly (p < 0.001), higher rates of wound contraction than those in control and COL-CS scaffold treated groups. In addition, MMP-9 levels were also significantly reduced in LGA composite scaffold-treated group compared with those in the control and COL-CS scaffold treated group. Thus, the LGA composite scaffold may serve as a promising therapy in DW due to its unique modulatory effect on inflammatory biomarker MMP-9.  相似文献   

9.
Several diseases or conditions cause dermatological disorders that hinder the process of skin repair. The search for novel technologies has inspired the combination of stem cell (SC) and light-based therapies to ameliorate skin wound repair. Herein, we systematically revised the impact of photobiomodulation therapy (PBM) combined with SCs in animal models of skin wounds and quantitatively evaluated this effect through a meta-analysis. For inclusion, SCs should be irradiated in vitro or in vivo, before or after being implanted in animals, respectively. The search resulted in nine eligible articles, which were assessed for risk of bias. For the meta-analysis, studies were included only when PBM was applied in vivo, five regarding wound closure, and three to wound strength. Overall, a positive influence of SC + PBM on wound closure (mean difference: 9.69; 95% CI: 5.78–13.61, P < 0.00001) and strength (standardized mean difference: 1.7, 95% CI: 0.68–2.72, P = 0.001) was detected, although studies have shown moderate to high heterogeneity and a lack of information regarding some bias domains. Altogether, PBM seems to be an enabling technology able to be applied postimplantation of SCs for cutaneous regeneration. Our findings may guide future laboratory and clinical studies in hopes of offering wound care patients a better quality of life.  相似文献   

10.
Calcium phosphate materials are widely used as bone-like scaffolds or coating for metallic hip and knee implants due to their excellent biocompatibility, compositional similarity to natural bone and controllable bioresorbability. Local delivery of drugs or osteogenic factors from scaffolds and implants are required over a desired period of time for an effectual treatment of various musculoskeletal disorders. Curcumin, an antioxidant and anti-inflammatory molecule, enhances osteoblastic activity in addition to its anti-osteoclastic activity. However, due to its poor solubility and high intestinal liver metabolism, it showed limited oral efficacy in various preclinical and clinical studies. To enhance its bioavailability and to provide higher release, we have used poly (ε-caprolactone) (PCL), poly ethylene glycol (PEG) and poly lactide co glycolide (PLGA) as the polymeric system to enable continuous release of curcumin from the hydroxyapatite matrix for 22 days. Additionally, curcumin was incorporated in plasma sprayed hydroxyapatite coated Ti6Al4V substrate to study in vitro cell material interaction using human fetal osteoblast (hFOB) cells for load bearing implants. MTT cell viability assay and morphological characterization by FESEM showed highest cell viability with samples coated with curcumin-PCL-PEG. Finally, 3D printed interconnected macro porous β-TCP scaffolds were prepared and curcumin-PCL-PEG was loaded to assess the effects of curcumin on in vivo bone regeneration. The presence of curcumin in TCP results in enhanced bone formation after 6 weeks. Complete mineralized bone formation increased from 29.6% to 44.9% in curcumin-coated scaffolds compared to pure TCP. Results show that local release of curcumin can be designed for both load bearing or non-load bearing implants with the aid of polymers, which can be considered an excellent candidate for wound healing and tissue regeneration applications in bone tissue engineering.  相似文献   

11.
Removal of residual tumor cells and regeneration of large bone defects are urgently required after surgical resection of bone tumors. To address these issues, a bifunctional scaffold with high photothermal effect and osteogenesis was developed for bone tumor therapy. Sintered mesoporous imidazolate framework 8 (ZIF8) nanoparticles with porphyrin-like macrocycles were synthesized by calcination of ZIF8 precursors under an N2 atmosphere. The prepared ZIF8 possesses good photothermal efficacy and drug loading capability. Phenamil (Phe), an activator of bone morphogenetic protein pathways, was encapsulated into ZIF8 before loading onto gelatin nanofibrous (GF) scaffolds. The loaded Phe exhibited sustained and near-infrared triggered release profiles, which is capable of promoting bone morphogenetic protein 2 induced osteogenic differentiation even under near-infrared treatment. Moreover, our studies revealed that the photothermal effect of GF/ZIF8-Phe scaffolds can kill MG-63 cells in vitro and inhibit subcutaneous tumor growth in vivo. Therefore, the GF/ZIF8-Phe scaffold represents a novel bifunctional platform for tumor therapy and bone regeneration.  相似文献   

12.
《中国化学快报》2022,33(12):5030-5034
Diabetic wounds lead to a decrease in quality of life and an increase in mortality. Current treatment strategies include preventing bacterial adhesion while improving microcirculation. As a new type of wound dressing that imitates natural skin, hydrogel has gradually emerged with its excellent properties. However, existing hydrogels rarely achieve satisfactory results in promoting wound repair and antibacterial simultaneously. In this case, we prepared methacrylic anhydride chemically modified hyaluronic acid as a hydrogel matrix, added polyhexamethylene biguanide as an antibacterial component, and loaded sodium alginate/salidroside composite microspheres which could sustainably release salidroside and thus promote angiogenesis. Hybrid hydrogel (HAMA/PHMB-Ms) was synthesized via photocrosslinking, and its chemical structure, particle size distribution and microstructure were characterized. The satisfactory antibacterial properties of the HAMA/PHMB(15%)-Ms hydrogel were studied in vitro, and its antibacterial rates against E. coli and S. aureus were 97.85% and 98.56%, respectively. In addition, after demonstrating its good biocompatibility, we verified that the HAMA/PHMB-Ms hydrogel has increased granulation tissue formation, more collagen deposition, more subcutaneous capillary formation, and better wound healing than blank control, HAMA and HAMA/PHMB hydrogel on the back wound model of diabetic mice. The results confirmed that HAMA/PHMB-Ms hydrogel was a promising material for the treatment of the diabetic wounds.  相似文献   

13.
Non-healing wounds cause hundreds of thousands of deaths every year, and result in large costs for society. A key reason for this is the prevalence of challenging bacterial infections, which may dramatically hinder wound healing. With resistance development among bacteria against antibiotics, this situation has deteriorated during the last couple of decades, pointing to an urgent need for new wound treatments. In particular, this applies to wound dressings able to combat bacterial infection locally in wounds and impaired skin, including those formed by bacteria resistant to conventional antibiotics. Within this context, antimicrobial peptides (AMPs) are currently receiving intense interest. AMPs are amphiphilic peptides, frequently net positively charged, and with a sizable fraction of hydrophobic amino acids. Through destabilization of bacterial membranes, neutralization of inflammatory lipopolysaccharides, and other mechanisms, AMPs can be designed for potent antimicrobial effects, also against antibiotics-resistant strains, and to provide immunomodulatory effects while simultaneously displaying low toxicity. While considerable attention has been placed on AMP optimization and clarification of their mode(s)-of-action, much less attention has been paid on efficient AMP delivery. Considering that AMPs are large molecules, net positively charged, amphiphilic, and susceptible to infection-mediated proteolytic degradation, efficient in vivo delivery of such peptides is, however, challenging and delivery systems needed for the realization of AMP-based therapeutics. In the present work, recent developments regarding AMP delivery systems for treatment of wounds and skin infections are discussed, with the aim to link results from physicochemical studies on, e.g., peptide loading/release, membrane interactions, and self-assembly, with those on the biological functional performance of AMP delivery systems in terms of antimicrobial effects, cell toxicity, inflammation, and wound healing.  相似文献   

14.
Mealworm and mealworm oil (MWO) have been reported to affect antioxidant, anti-coagulation, anti-adipogenic and anti-inflammatory activities. However, the function of MWO in wound healing is still unclear. In this study, we found that MWO induced the migration of fibroblast cells and mRNA expressions of wound healing factors such as alpha-smooth muscle actin (α-SMA), collagen-1 (COL-1) and vascular endothelial growth factor (VEGF) in fibroblast cells. The tube formation and migration of endothelial cells were promoted through the activation of VEGF/VEGF receptor-2 (VEGFR-2)-mediated downstream signals including AKT, extracellular signal-regulated kinase (ERK) and p38 by MWO-stimulated fibroblasts for angiogenesis. Moreover, we confirmed that MWO promoted skin wound repair by collagen synthesis, re-epithelialization and angiogenesis in an in vivo excisional wound model. These results demonstrate that MWO might have potential as a therapeutic agent for the treatment of skin wounds.  相似文献   

15.
The formation of new scaffolds to enhance healing magnitude is necessarily required in biomedical applications. Granulation tissue formation is a crucial stage of wound healing in which granulation tissue grows on the surface of a wound by the formation of connective tissue and blood vessels. In the present study, porous hydrogels were synthesized using chitosan incorporating latex of the Calotropis procera plant by using a freeze–thaw cycle to stimulate the formation of granulation tissue and angiogenesis in wound healing applications. Structural analysis through Fourier transform infrared (FTIR) spectroscopy confirmed the interaction between chitosan and Calotropis procera. Latex extract containing hydrogel showed slightly higher absorption than the control during water absorption analysis. Thermogravimetric analysis showed high thermal stability of the 60:40 combination of chitosan (CS) and Calotropis procera as compared to all other treatments and controls. A fabricated scaffold application on a chick chorioallantoic membrane (CAM) showed that all hydrogels containing latex extract resulted in a significant formation of blood vessels and regeneration of cells. Overall, the formation of connective tissues and blood capillaries and healing magnitude decreased in ascending order of concentration of extract.  相似文献   

16.
Proper management of nonhealing wounds is an imperative clinical challenge. For the effective healing of chronic wounds, suitable wound coverage materials with the capability to accelerate cell migration, cell proliferation, angiogenesis, and wound healing are required to protect the healing wound bed. Biodegradable polymeric meshes are utilized as effective wound coverage materials to protect the wounds from the external environment and prevent infections. Among them, electrospun biopolymeric meshes have got much attention due to their extracellular matrix mimicking morphology, ability to support cell adhesion, and cell proliferation. Herein, electrospun nanocomposite meshes based on polycaprolactone (PCL) and titanium dioxide nanorods (TNR) are developed. TNR incorporated PCL meshes are fabricated by electrospinning technique and characterized by scanning electron microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy (FTIR) analysis, and X‐Ray diffraction (XRD) analysis. In vitro cell culture studies, in ovo angiogenesis assay, in vivo implantation study, and in vivo wound healing study are performed. Interestingly, obtained in vitro and in vivo results demonstrated that the presence of TNR in the PCL meshes greatly improved the cell migration, proliferation, angiogenesis, and wound healing. Owing to the above superior properties, they can be used as excellent biomaterials in wound healing and tissue regeneration applications.  相似文献   

17.
Tight manipulation of the initial leukocytes infiltration and macrophages plasticity toward the M2 phenotype remain a challenge for diabetic wound healing. Inspired by the platelet function and platelet–macrophage interaction, a platelet-anchored polylactic acid-b-polyethylene glycol-b-polylactic acid (PLA-PEG-PLA) electrospun dressing is developed for inflammatory modulation and diabetic wounds healing acceleration. PLA-PEG-PLA electrospun meshes encapsulated with thymosin β4 (Tβ4) and CaCl2 is fabricated with electrospinning, followed by immersion of electrospun mesh in platelet-rich plasma to firmly anchor the platelets. It is demonstrated that the anchored platelets on electrospun mesh can enhance the initial macrophage recruitment and control the Tβ4 release from electrospun meshes to facilitate the macrophages polarization to the M2 phenotype. The inflammatory regulation promotes the expression of vascular endothelial growth factor and the migration of vascular endothelial cells for angiogenesis, resulting in accelerated diabetic wounds healing. Therefore, this work paved a new way to design platelet-inspired electrospun meshes for inflammation manipulation and diabetic wound healing.  相似文献   

18.
Native extracellular matrix (ECM) possesses the biochemical cues to promote cell survival. However, decellularized, the ECM loses its cell supporting mechanical integrity. We report, here, a new biohybrid vascular graft fabricated from a blend of polycaprolactone (PCL), poliglecaprone (PGC), and incorporated with human biomatrix as functional materials for vascular tissue interfacing applications, thus harnessing the biochemical cues from the ECM and the mechanical integrity of the polymer blends. The fabricated fibro-porous tubular small diameter graft (i.d. = 4 mm) from electrospun polymer blend was coated with HuBiogeltm, a cocktail of collagenous matrix derived from human placenta called . The compositional, morphological, and mechanical properties of graft were measured, analyzed, and compared with a non-coated tubular PCL/PGC graft using Fourier Transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). BCA assay was used to calculate the protein content and coating-uniformity throughout the hybrid graft. Mechanical properties such as tensile strength (1.6 MPa), Young's modulus (2.4 MPa), burst pressure (>1900 mmHg), and suture retention strength (2.3 N) of hybrid graft were found to be comparable to native blood vessels. Protein coating has improved the hydrophilicity and the biocompatibility (cell viability and cell-attachment) enhanced with human umbilical vein endothelial cells (HUVECs) seeded in vitro onto the lumen layer of the graft over two weeks. The overall results promise this new biohybrid graft to be a potential candidate for vascular tissue interface and regeneration.  相似文献   

19.
One of the most common problems in wounds is delayed healing and complications such as infection. Therefore, the need for novel materials accelerates the healing of wounds especially abdominal wounds after surgery besides high efficiency and safety is mandatory. The rate of wound healing, anti-inflammatory and biocompatibility of Zn-Al LDH (Zn-Al layer double hydroxide) alone and loaded with Curcumin (Zn-Al LDH/Curcumin) was screened via in-vivo assays through intramuscular implantation in rat abdominal wall with intact peritoneum cavity. The implanted drugs were formed through Curcumin loaded into LDH of Zn-Al with drug release of 56.78 ± 1.51% within 24 h. The synthesized nanocomposite was characterized by (TGA/DTA) thermal analysis, (XRD) X-ray diffraction, (FESEM) Field emission scanning electron microscopy, (HRTEM) high resolution transmission electron microscope, energy dispersive X-ray (EDX) and low-temperature N2 adsorption, pore volume and average pore size distribution. The integrity of blood circulation, inflammatory signs, wound healing rate, capacity of tissue integration, antigenicity and composite biocompatibility, auto fluorescence ability of collagen bundles and the tensile strength of the muscle were assessed histopathologically after 7 and 30 days’ post-implantation. Excellent wound healing ability was achieved with shortest length between the wound gap edges and higher tensile strength of the muscle. Besides emit florescence very well followed by good healing and tensile muscles strength in Curcumin while very low strength with scar formation in Zn-Al LDH/Curcumin in both acute and chronic wound. No signs of inflammation in Curcumin & Zn-Al LDH. No vessels obstruction or bleeding observed in both Zn-Al LDH and Curcumin more than Zn-Al LDH/Curcumin and control which examined through candling. Good healing & infiltrated immune cells in same groups through histopathological examination. This work supports the anti-inflammatory, wound healing and biocompatibility of both LDH and Curcumin with living matter, increasing their biomedical applications in this era with safety and increasing efficacy with prolonged drug release.  相似文献   

20.
Intact skin is the first physical barrier against all microbial infections. Thus, in the cases of wounds, burns, and skin damage, bacteria can infect and invade the deeper layers of skin to the bloodstream and other organs leading to severe illnesses. Thus, our study aims to investigate the potential activity of natural products, propolis and honeybee venom, to control wound infections with multi-drug resistant Staphylococcus aureus (MDRSA) and safely accelerate the wound healing. First, this study characterized the clinically isolated S. aureus using biochemical, molecular, and antibiotic sensitivity tests. Then, the hydrogel was prepared via mixing chitosan with honey, propolis, and venom at different ratios, followed by physicochemical characterization and biological examination. The in vivo experiment results after topical application of optimum concentrations revealed that both venom and propolis have significant antibacterial activity at different temperatures. The IC50 of both propolis antioxidant and cytotoxicity assays was found to be 40.07 ± 2.18 μg/mL and 18.3 μg/mL, respectively. The cocktail bacteria showed both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 10 µg/mL and of 300 µg/mL with venom respectively & MIC and MBC of 100 µg/mL, 300 µg/mL with propolis respectively. The use of hydrogel was effective against wound infection and enhanced wound healing during 14 days. Before starting clinical trials, further studies can be done on large animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号