首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the electrocatalytic characteristics of nitrogen‐doped carbon (NDC) prepared from Clerodendrum Infortunatum L leaves on a glassy carbon electrode (GCE) surface was evaluated with regards to its ability to detect the electroactive drug ketoconazole (KCZ). The NDC was prepared by carrying out a simple pyrolysis of dry powder of the leaves at 850 °C. The prepared NDC was characterized using field‐emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and Brunauer‐Emmett‐Teller analysis, and was then used as an electrode material. The performance of the electrochemical KCZ sensor with the NDC‐modified glassy carbon electrode (NDC/GCE) was found to be optimal when using PBS buffer at pH 3 and a concentration of 0.1 mg/ml of NDC in the conjugate with Nafion polymer. Under these conditions, the NDC/GCE displayed a KCZ detection limit of 3 μM and a linear dependence of its response on KCZ concentration over a wide range of KCZ concentrations from 47 μM to 752 μM (R2=0.9742). These results confirmed the potential of NDC as an electrocatalyst.  相似文献   

2.
A new molecularly imprinted polymer (MIP) was prepared using methamidophos (MAP) as the template molecule based on non‐covalent interaction. The complexes formed between template and monomers before polymerization were characterized by 1H NMR titration test, FT‐IR and UV spectrometry study. These studies indicated that a 1:2 molecular complex formed dominantly between MAP and functional monomers. A model mainly involving cooperative hydrogen interaction was proposed by exact placement of functional groups. Association constant was estimated to be 2.894 × 106 L2/mol2. When the initial concentration of MAP was 1.0 mmol L?1, the affinity capacity of MIP was 4.23 times that of NIP. The binding performance of MIP was modeled with the Freundlich isotherm (FI) and the total number of binding sites was calculated to be 33.97 μmol/g. The MIP showed great homogeneity with a heterogeneity index of m = 0.7356. The specificity of MIP was investigated by single‐analyte binding and molecularly imprinted solid‐phase extraction (MISPE) assays using MAP and other structurally related organophorous pesticides (OPPs). The results indicated that the MIP had a marked preference for MAP.  相似文献   

3.
The potential energy surface for the reaction involving NH2 plus NO was explored with a quadratic complete basis set ab initio approach and three hybrid density functional theory methods, the target being to accurately estimate activation barriers and the relative stability of the nitrogen–oxygen isomers. The computational results were compared with previously performed ab initio calculations and new, more accredited values for the NH2NO rearrangement to HNNOH and for the HNNOH decomposition reaction were suggested. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 409–414, 1998  相似文献   

4.
The kinetics of the reaction between dimethyldioxirane and 2-methylbutane in acetone solutions were studied spectrophotometrically at 25 °C. The radical-chain induced decomposition of dioxirane proceeding with the participation of the carbon-centered radicals follows the first-order kinetic law. The reaction is inhibited by dioxygen. In the presence of O2, the dimethyldioxirane consumption is due to the homolysis of the O−O bond (at a rate constant of 6.3·10−4 s−1) followed by attack of the C−H bond of 2-methylbutane by the biradical formed. The rate constant of the reaction between the alkyl radical and dimethyldioxirane was estimated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1785–1788, October, 1997.  相似文献   

5.
6.
The equilibrium of the heterogeneous reaction between dissolved sodium sulfide and biologically produced sulfur particles has been studied. Biologically produced sulfur was obtained from a bioreactor of a hydrogen sulfide removal process in which the dominating organism is Thiobacillus sp. W5. Detailed knowledge of this reaction is essential to understand its effect on the process. The results were compared with the equilibrium of the reaction of sulfide with ‘inorganic’ elemental sulfur. The equilibrium between dissolved sodium sulfide and biologically produced sulfur particles can be described by an equilibrium constant, Kx, which consists of a weighted sum of constants for polysulfide ions of different chain length, rather than a true single equilibrium constant. For biologically produced sulfur pKx = 9.10 ± 0.08 (21 °C) and 9.17 ± 0.09 (35 °C) with an average polysulfide chain length x = 4.91 ± 0.32 (21 °C) and 4.59 ± 0.31 (35 °C). The pKx value for biologically produced sulfur is significantly higher than for reaction of dissolved sodium sulfide with inorganic sulfur (pKx = 8.82; 21 °C). This difference is probably caused by the negatively charged polymeric organic layer, which is present on biologically produced sulfur but absent with “inorganic” sulfur. Specific binding of polysulfide ions to the organic layer results in a higher polysulfide concentration at the reaction site compared to the bulk concentration. This results in an apparent decrease of the measured equilibrium constant, Kx.  相似文献   

7.
The preparation of several organic-inorganic hybrid materials by sol-gel process derived from Hoveyda-type monomers is described. One of them presents a nitro group at the para position with respect to the alkoxy moiety. These materials were treated with Grubbs catalysts to generate the corresponding Hoveyda-Grubbs carbene ruthenium complexes covalently bonded to the silica matrix, which were tested as recyclable catalysts for diene and enyne RCM. Electronic effects of the nitro group resulted in enhanced activity of the catalyst. Whereas the recyclability decreased in RCM of dienes, the presence of this electron-withdrawing group was highly advantageous for the RCM of enynes, the reusability being greatly improved.  相似文献   

8.
Hydroxyl radical (HO·) plays an important role in the initial pyrolysis of hydroxyl‐containing polymers, such as phenolic resin (PR). In this study, the reaction mechanism between HO· and bisphenol‐F (BPF) or tetra‐methyl substituted BPFs, which were taken as the model molecules of PR, was studied with the density functional theory approach. The results based on the Fukui function and reduced density gradient function showed that, both the hydroxyls and the carbon atoms in the phenolic groups are the reactive sites for HO· attack. The hydroxyls are most likely to be attacked by HO· owing to the strong electrostatic potential around the hydroxyls and the low reaction barriers, especially for cis‐ oo' type BPF. The strong p—π (CH—π and OH—π) interaction between the phenolic rings in BPF leads to decreased conjugative effect of the phenolic rings, which further lead to decreased addition barriers and reaction rate constant.  相似文献   

9.
In this work, a rapid and sensitive thin‐layer chromatography combined with surface‐enhanced Raman spectroscopy method was established for rapid detection of benzidine and 4‐aminobiphenyl in migration from food contact materials based on Au nanoparticle doped metal‐organic framework. Benzidine and 4‐aminobiphenyl were firstly separated by thin‐layer chromatography to solve the limitation of their overlapping Raman peaks. Then the target molecules were monitored by adding AuNPs/MIL‐101(Cr) on the sample spots. Under the optimum conditions, the concentration of benzidine and 4‐aminobiphenyl can be quantitatively measured in the range of 2.0‐20.0 and1.0‐15.0 μg/L, respectively with good linear relationship, and the limits of detection were 0.21 and 0.23 μg/L, respectively. Furthermore, the developed method was applied to analyze benzidine and 4‐aminobiphenyl in migration of different food contact materials. The recoveries of benzidine and 4‐aminobiphenyl for migration of food contact materials, including paper cups, polypropylene food containers, and polyethylene glycol terephthalate bottles, were 80.6‐116.0 and 80.7‐118% with relative standard deviations of 1.1‐9.1 and 3.1‐9.9%, respectively. Surface‐enhanced Raman scattering detection was performed conveniently in the on‐plate mode without additional elution process. The method shows great potential in rapid monitoring of hazardous substances with overlapping characteristic Raman peaks in food contact materials.  相似文献   

10.
This work is an extension of our investigation of the mechanism of the Kolbe-Schmitt reaction of sodium 2-naphthoxide. The carboxylation reaction of sodium 2-naphthoxide in the position 6 is examined by means of the B3LYP/LANL2DZ method. After the initial formation of sodium 2-naphthoxide-CO2 complex, the carbon of the CO2 moiety performs an electrophilic attack on the naphthalene ring in position 8. Further transformations lead to the formation of sodium 6-hydroxy-2-naphthoate. Our findings are in good agreement with the experimental results on the carboxylation reaction of sodium 2-naphthoxide. Correspondence: Svetlana Marković, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia.  相似文献   

11.
A series of ternary mesoporous CuZnMCM-41 materials has been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications in CO water gas shift reaction were studied.  相似文献   

12.
The zinc(II) iodide mediated ‘ene’ reaction between (4R)-4,5-bis-(tert-butyldimethylsilyloxy)-2-(trimethylsilylmethyl)pent-1-ene (43) and (5S,7R,9S)-5,11-dibenzyloxy-4,4-dimethyl-7,9-dihydroxy-7,9-O-isopropylideneundec-1-yn-3-one (53) gave the (E)-vinylsilane 54 with excellent stereoselectivity. Simultaneous deprotection and cyclisation via a stereoselective oxy-Michael reaction gave the bicyclic acetal 57 after treatment with trimethyl orthoformate. A synthesis of the ester 60 corresponding to the C(1)-C(16) fragment of the bryostatins was then completed by O-silylation, oxidative cleavage of the methylene group and a stereoselective condensation of the resulting ketone 59 with the chiral phosphonate 61.  相似文献   

13.
The interaction between aggregates of sodium deoxycholate and an optical probe, sensitive to the nature of the medium surrounding it, has been studied by circular dichroism and NMR measurements. The results indicate that the molecules of the probe are embedded in a polar medium and interact with the apolar face of sodium deoxycholate. These findings seem to be consistent with a structural model of the micelles different from that currently accepted.  相似文献   

14.
Resin‐based dental materials have raised debates concerning their safety and biocompatibility, resulting in a growing necessity of profound knowledge on the quantity of released compounds into the oral cavity. In this context, the aim of this study was to develop a comprehensive and reliable procedure based on liquid chromatography with mass spectrometry for the simultaneous analysis of various leached compounds (including bisphenol A based compounds) in samples from in vitro experiments. Different experiments were performed to determine the optimal analytical parameters, comprising mass spectrometry parameters, chromatographic separation conditions, and sample preparation. Four internal standards were used as follows: deuterated diethyl phthalate and bisphenol A (commercially available), and deuterated analogues of triethylene glycol dimethacrylate and urethane dimethacrylate (custom‐made). The optimized method was validated for linearity of the calibration curves and the associated correlation coefficient, lower limit of quantification, higher limit of quantification, and intra‐ and interassay accuracy and precision. Additionally, the developed liquid chromatography with tandem mass spectrometry method was applied to the analysis of leaching compounds from four resin‐based dental materials. The results indicated that this method is suitable for the analysis of different target compounds leaching from dental materials. This method might serve as a valuable basis for quick and accurate quantification of leached compounds from resin‐based dental materials in biological samples.  相似文献   

15.
Huge plastic consumption and depletion of fossil fuels are at the top of the world's environmental and energy challenges. The scientific community has tackled these issues through different approaches. Catalytic pyrolysis of plastic wastes to valuable products has been proved as a sustainable route which fits with the circular economy aspects. The design of catalytic materials is the central factor for performing the catalytic conversion of plastic wastes. This review aims to conduct a Bibliometric analysis of the pyrolysis of plastic wastes and non-precious-based catalysts by mapping research studies over the last fifty years. The analysis was developed via VOSviewer and RStudio tools. It showed the historical progress regarding plastic waste pyrolysis to produce valuable products and chemicals worldwide. The research shows that the top five countries with the highest citations and publications in this field were Spain, China, England, the USA and India. The Journal of Analytical and Applied Pyrolysis had the most comprehensive coverage of plastic waste. The relationship between the catalyst and the mechanism of plastic waste can influence the production yield and selectivity. The research gap and underrepresented research topics were identified, and previous research studies on developing non-precious-based catalysts that were most relevant to the current topic were reviewed and discussed. The challenges and perspectives on catalyst preparation and development for material complexity were critically discussed. Challenges of previous studies and directions for future research were provided. This report might guide the reader to take a general look at plastic waste valorization by pyrolysis and easily understand the main challenges.  相似文献   

16.
《先进技术聚合物》2018,29(2):934-940
A novel heat‐curable silicone rubber (MCSR/Si‐PAMAM) was prepared by using siloxane polyamidoamine (Si‐PAMAM) dendrimers as cross‐linkers and polysiloxane containing γ‐chloropropyl groups as gums. The chemical cross‐linking occurs through the reaction between Si‐PAMAM dendrimers and polysiloxane containing γ‐chloropropyl groups. The effect of various amounts of cross‐linkers on mechanical properties of MCSR/Si‐PAMAM was discussed in this paper. MCSR/Si‐PAMAM exhibits favorable mechanical properties with a tensile strength of 10.06 MPa and a tear strength of 47.9 kN/m when the molar ratio r of [N‐H]/[CH2CH2CH2Cl] is 1:1. These excellent mechanical properties can be attributed to the formation of concentrative cross‐linking from Si‐PAMAM dendrimers in the cross‐linking networks, along with the introduction of Si–O–Si units in the internal structure of dendrimers. The introduction of Si–O–Si units reduces the steric hindrance of molecular structure, which facilitates the N–H bonds in the interior layers of dendrimers to react with γ‐chloropropyl groups. In addition, thermogravimetric analysis results indicate that MCSR/Si‐PAMAM is thermally stable even at high temperatures in a nitrogen atmosphere. Differential scanning calorimetry analysis reveals that the glass transition peak of MCSR/Si‐PAMAM is not identified in the temperature range −150 to −30°C, only a melting endothermic peak at −40°C.  相似文献   

17.
A theoretical study of the mechanism and the kinetics for the hydrogen abstraction reaction of the biradical hydroperoxy radical has been presented at the CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G(d,p) level of theory. Our theoretical calculations suppose a stepwise mechanism involving the formation of a postreactant complex in the triplet and singlet entrance channels. Four transition states of the six‐membered chain complexes (3TS1 and 1TS1) and six‐membered ring complexes (3TS2 and 1TS2) are located at the high dual level CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G(d,p) method. The rate constants of Path 1 ~ Path 4 at the CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G (d,p) level are calculated by means of the conventional transition state theory (TST) and canonical variational TST without and with small‐curvature tunneling (SCT) correction within the temperature range of 200–2,500 K. The calculated results show that the triplet channel is the dominating reaction channel and Path 2 is found to be the most favorable pathway. The rate constants of Path 2 are in good agreement with the experimental values at the experimentally measured temperatures. Moreover, the variational effect is not obvious in the low temperature range but is not neglectable in the high temperature range. The SCT plays an important role particularly in the low temperature range. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
19.
The mechanism of reaction Cl2+2HBr=2HCl+Br2 has been carefully investigated with density functional theory (DFT) at B3LYP/6-311G** level. A series of three-centred and four-centred transition states have been obtained. The activation energy (138.96 and 147.24 kJ/mol, respectively) of two bimolecular elementary reactions Cl2+HBr→HCl+BrCl and BrCl+HBr→HCl+Br2 is smaller than the dissociation energy of Cl2, HBr and BrCl, indicating that it is favorable for the title reaction occurring in the bimolecular form. The reaction has been applied to the chemical engineering process of recycling Br2 from HBr. Gaseous Cl2 directly reacts with HBr gas, which produces gaseous mixtures containing Br2, and liquid Br2 and HCl are obtained by cooling the mixtures and further separated by absorption with CCl4. The recovery percentage of Br2 is more than 96%, and the Cl2 remaining in liquid Br2 is less than 3.0%. The paper provides a good example of solving the difficult problem in chemical engineering with basic theory.  相似文献   

20.
A novel and simple spectrophotometric method for the direct determination of methanol with 1,2-naphthoquinone-4-sulfonate (NQS) is developed in this paper. It is based on the fact that methanol can catalyze the reaction between 1,2-naphthoquinone-4-sulfonate and hydroxyl ion to form 2-hydroxy-1,4-naphthoquinone in buffer solution of pH 13.00. Beer's law is obeyed in a range of 0.26-15.8 mg/ml at the maximal absorption wavelength of 454 nm. The equation of linear regression is A = 0.01998 + 0.05944C (mg/ml), with a linear regression correlation coefficient of 0.9977. The detection limit is 0.25mg/ml (3sigma/k), while R.S.D. is 2.0% and the recovery rate is in a range of 96.5-103%. The detailed mechanism for the formation of the products is proposed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号