首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile strategy was used for the synthesis of nickel ferrite/zinc oxide (NiFe2O4/ZnO) nanocomposite via an ultra-sonication method and observed its recyclability and photostability with enhanced visible light-driven photocatalytic performance. The photo degradation activities of as-synthesized photocatalysts were investigated using various dyes including methylene blue, crystal violet and methyl orange under solar light irradiation. Prepared material degrades 49.2% methyl orange, 44.4% methyl blue and 41.3% crystal violet in 40 min. Further, the synergistic effect of nickel ferrite and zinc oxide can reduce the probability of recombination of charge carrier and boost the charge separation which leads to remarkable photocatalytic performance. Magnetic properties of nickel ferrite reduces the agglomeration of material and increases the recyclability. The NiFe2O4/ZnO nanocomposites also exhibited better antibacterial activity for Pseudomonas aeruginosa and Staphylococcus aureus, which shows that they can be used for both environmental and biological applications.  相似文献   

2.
An effective strategy for the polyolefin-functionalized graphene oxide (fGO) using two-step methods has been reported for GO/HDPE nanocomposite with excellent mechanical properties.  相似文献   

3.
Excellent antibacterial property of graphene oxide makes it an important antibacterial material. However, in some cases, a synergistic combination of materials with different antibacterial mechanisms is desired. In this work, we developed a simple two-step protocol to prepare ornidazole (ONZ), a nitroimidazole antiprotozoal drug, loaded graphene-based paper for combined antibacterial materials. Graphene oxide (GO) and reduced graphene oxide (rGO) were used as carriers in antibacterial materials. After mixed with ONZ directly in aqueous media and filtrated under vacuum, the freestanding GO/ONZ and rGO/ONZ were peeled off from the filtrate membrane. The ONZ loading contents in the paper was determined by UV/vis spectroscopy and the surface properties were investigated by measuring their contact angle, which will have an important impact on the antibacterial effects of the papers.  相似文献   

4.
宋义虎  郑强 《高分子科学》2013,31(3):399-406
Colloidal suspensions of glutaraldehyde (GA) crosslinked or grafted graphene oxide (GO) sheets were fabricated by simply tailoring the feed sequence. The different structures were confirmed by Fourier transform infrared spectra and X-ray diffraction. As demonstration of the utilities, the different colloidal suspensions were used to prepare free-standing papers by flow-directed filtration and poly(vinyl alcohol) (PVA)-based nanocomposite films by casting. Free-standing papers from GA crosslinked GO sheets exhibited better mechanical properties than unmodified GO paper, while nanocomposite films from GA grafted GO exhibit higher tensile strength and Young’s modulus.  相似文献   

5.
At present, frequent outbreaks of bacteria and viruses have seriously affected people's normal lives. Therefore, the study of broad-spectrum antibacterial nanocomposites is very promising. However, most antibacterial materials have some disadvantages, such as single bactericidal mechanisms and unrepeatable use. Based on the current situation, a kind of nanocomposite with three structures of graphene oxide (GO), quaternary ammonium salt (QAs) and N-halamine was prepared, which showed synergistic effect to improve antibacterial activity and combined with a variety of sterilization mechanisms. Meanwhile, GO can provide richer ways of sterilization and high specific surface area, which is conducive to the grafting of quaternarized N-halamine. The advantages of physical sterilization of GO, charge adsorption of QAs, reuse of N-halamine and efficient sterilization are fully utilized. The results showed that the quaternarized N-halamine-grafted GO was obtained successfully. GO grafted with quaternarized N-halamine polymer showed strong speedy bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (99%). It had good storage and regeneration properties.  相似文献   

6.
Graphene oxide (GO) nanosheets dispersed in strong acidic t-butanol/water medium can be reduced and self-assembled into a self-standing graphene hydrogel under γ-ray radiation, providing a facile and economical preparation method for hydroxylalkylated graphene-based aerogel.  相似文献   

7.
Poly-(butylene adipate-co-terephthalate) (PBAT) has captured significant interest by dint of its biodegradability, superb ductility, promising processing properties and good final properties, but the insufficient barrier performance limits its application, especially in packaging field. In the present work, improved barrier properties of PBAT films were obtained by introducing an extremely low amount of graphene oxide nanosheets (GONS). O2 and water vapor permeability coefficients were decreased by more than 70% and 36% at the GONS loading of 0.35 vol%, respectively. The enhanced barrier performance was ascribed to the outstanding impermeability and well dispersion of GONS as well as the strong interfacial adhesion between GONS and PBAT matrix. Furthermore, tensile strength and Young's modulus of GONS/PBAT nanocomposite rise up to 27.8 MPa and 72.2 MPa from 24.6 MPa to 58.5 MPa of neat PBAT, respectively, showing a prominent increase of mechanical properties compared to neat PBAT. The incorporation of GONS also endowed PBAT matrix with an excellent thermal stability. These findings provide a significant guidance for fabricating high barrier films on a large scale.  相似文献   

8.
《中国化学快报》2020,31(10):2651-2656
Graphene oxide (GO) membranes show great potential in molecular separation for water treatment. However, the inferior stability of GO membranes is a major bottleneck for practical applications. In this study, bio-inspired polydopamine (PDA) deposition is reported for enhancing the stability of GO membranes. Through simple and mild immersion, PDA is self-polymerized on GO membranes. The blocking of PDA chains to membrane defects improves the rejections for various molecules. Because the inherently strong adhesion and crosslinking of PDA greatly strengthen the interactions of substrates to GO layers and the binding force of GO nanosheets, the prepared PDA-GO membranes exhibit impressive long-term stability in cross-flow filtration, and maintain good nanofiltration performance at various feed pressures, tangential velocities, and even after external scratching. Moreover, because the deposited PDA layers obstruct the direct contact between GO and contaminants, the antifouling property of the PDA-GO membranes increases substantially, with recovery ratio about 98%.  相似文献   

9.
BiVO4-GO-PVDF (PVDF = Polyvinylidene Difluoride) photocatalyst is successfully synthesized by ultrasonication method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. Morphology of BiVO4-GO-PVDF looks like a human embryo embedded inside an amniotic sac. Photocatalytic performance of BiVO4-GO-PVDF for decolorization of methylene blue is investigated. BiVO4-GO-PVDF system reveals enhanced photocatalytic activity degradation of methylene blue (MB), Rhodamine B (RhB) & Safranin-O (SO) in water under visible light irradiation as compared to the pure BiVO4 catalyst, BiVO4 & PTFE decorated on the graphene sheet. The experimental result reveals that the covering of graphene sheets in this composite catalyst enhances photocatalytic performance under visible light. This enhanced activity is mainly attributed to effective quenching of the photogenerated electron-hole pairs confirmed by photoluminescence spectra. Trapping experiments of radicals and holes were conducted to detect reactive species generated in the photocatalytic system, experimental results revealed that direct hole oxidation reaction is obviously dominant during photocatalytic reactions on the BiVO4-GO-PVDF system.  相似文献   

10.
A nanocomposite of polyaniline/reduced graphene oxide (PANI-rGO) was synthesized using a hydrothermal method. The product was characterized by FT-IR, Raman spectra, XRD, SEM and TEM. Then the hybrid material of PANI-rGO and Nafion (PANI-rGO-NF) was prepared and used to modify glassy carbon electrode for the trace determination of dopamine (DA) employing differential pulse voltammetry (DPV). It was found that the hybrid material showed good catalytic activity toward the oxidation of DA, and no response to ascorbic acid (AA) and uric acid (UA) was observed, suggesting a high selectivity of the sensor toward DA. The peak currents were linearly correlated with the concentration of DA in the range from 0.05 μmol/L to 60.0 μmol/L (R=0.996) and 60.0 μmol/L to 180.0 μmol/L (R=0.996) with a detection limit of 0.024 μmol/L (S/N=3). The modified electrode also exhibited excellent repeatability and stability.  相似文献   

11.
In this study, manganese porphyrin was grafted on the surface of graphene oxide nanosheets via covalent bonding to produce a heterogeneous catalyst. The prepared nanocomposite was characterized using X-ray diffraction, UV–vis spectroscopy, scanning electron microscopy, Fourier transform infrared, and thermogravimetric analysis. Atomic absorption spectroscopy was also used to determine the amount of the loaded catalyst. The catalytic efficiency of the immobilized Mn-porphyrin was investigated for the aerobic oxidation of alkenes and saturated alkanes in acetone under mild reaction conditions. The prepared heterogenized catalyst displays superior catalytic performance as compared to the homogeneous catalyst. Moreover, the excellent turnover number (more than 31,767) achieved for the oxidation of styrene indicates the high longevity of the supported catalyst. The catalyst structure is preserved well after the oxidation reaction and is simply reused at least five times, without any significant loss of the catalytic efficiency.  相似文献   

12.
ABSTRACT

This study describes a new magnetic solid-phase extraction (MSPE) technique based on Fe3O4/graphene oxide-soluble eggshell membrane protein (Fe3O4/GO-SEP) for accurate measurement of malachite green (MG) residue in various water samples residues by UV-Vis spectroscopy. The morphology of the prepared adsorbent has been studied by scanning electron microscopy and atomic force microscopy in details. Parameters affecting the MSPE were optimised and determined with UV-Vis spectrophotometry thoroughly. Under the optimised extraction circumstances, the introduced method represented a wide linearity over the concentration of 0.5–250 ng mL?1, a high enrichment factor of 83.3 and low detection limit of 0.2 ng mL?1. The prepared Fe3O4/GO-SEP was successfully used for preconcentration and determination of MG in river and fish farming water samples with suitable precision and accuracy.  相似文献   

13.
本文通过简单超声法制备了氧化石墨烯-石墨烯(GO-Gr)碳复合材料,通过扫描电镜和电化学方法进行表征。将其修饰在玻碳电极表面,成功构建了用于对乙酰氨基苯酚(APAP)和对氨基苯酚(PAP)检测的电化学传感器。采用差分脉冲伏安法(DPV)测定APAP和PAP,线性检测范围为0.1~70μmol/L和0.3~60μmol/L,检出限为0.02 和0.1μmol/ L。同时,构建的传感器还表现出良好的稳定性和抗干扰能力,可用于实际样品的检测。  相似文献   

14.
We fabricated graphene oxide (GO) films on glass substrates by blade coating a lyotropic GO liquid crystal dispersion. Substrate temperature and blading speed were precisely controlled to manipulate the surface morphologies of GO films. The temperature and blade speed influenced the drying rate of film and the amount GO dispersion supplied. By controlling these parameters, film-thickness modulation and three types of surface wrinkle patterns were selectively achieved. We also plotted the wrinkle patterns diagram as functions of the film fabrication conditions. The films exhibited different optical anisotropies depending on wrinkle patterns. GO films with controlled wrinkles can be used as electrodes for supercapacitor applications owing to the large surface areas.  相似文献   

15.
Graphene and graphene oxide nanocomposites are promising and fascinating types of nanocomposites because of their fast kinetics, unique affinity for heavy metals, and greater specific area. Initially, in this study, a green, cost-effective and facile method was utilized to prepare G, GO, CdO, G-CdO, and CdO-GO nanocomposites by Azadirachta indica and then analyzed using UV–vis spectroscopy, Fourier-transform spectroscopy, Raman, X-ray diffraction and scanning electron microscope. The synthesized nanocomposites were explored for chromium elimination from wastewater collected from a petroleum refinery. CdO-GO, G-CdO nanocomposites showed remarkable adsorption capability of 699 and 430 mg g?1 which was higher than G (80 mg g?1), GO (65 mg g?1), and CdO (400 mg g?1). Based on the R2 (correlation coefficient) values, the kinetic statistics of Cr (VI) onto the G, GO, CdO, G-CdO, and CdO-GO were effectively obeyed by pseudo-second-order than by all other models. The R2 values for the five nano-bioadsorbents were extraordinarily high (R2 greater than 0.990) which ensured the chemisorption. This study ensured that the adsorptive removal rate of Cr (VI) is still greater than 85 % after repeated five cycles, suggesting that the produced nanomaterials are adsorbents with strong recyclability.  相似文献   

16.
There is an increasing need to develop biosensors for the detection of harmful pesticide residues in food and water. Here, we report on a versatile strategy to synthesize functionalized graphene oxide nanomaterials with abundant affinity groups that can capture histidine (His)-tagged acetylcholinesterase (AChE) for the fabrication of paraoxon biosensors. Initially, exfoliated graphene oxide (GO) was functionalized by a diazonium reaction to introduce abundant carboxyl groups. Then, Nα,Nα-bis(carboxymethyl)-l-lysine hydrate (NTA-NH2) and Ni2+ were anchored onto the GO based materials step by step. AChE was immobilized on the functionalized graphene oxide (FGO) through the specific binding between Ni-NTA and His-tag. A low anodic oxidation potential was observed due to an enhanced electrocatalytic activity and a large surface area brought about by the use of FGO. Furthermore, a sensitivity of 2.23 μA mM−1 to the acetylthiocholine chloride (ATChCl) substrate was found for our composite covered electrodes. The electrodes also showed a wide linear response range from 10 μM to 1 mM (R2 = 0.996), with an estimated detection limit of 3 μM based on an S/N = 3. The stable chelation between Ni-NTA and His-tagged AChE endowed our electrodes with great short-term and long-term stability. In addition, a linear correlation was found between paraoxon concentration and the inhibition response of the electrodes to paraoxon, with a detection limit of 6.5 × 10−10 M. This versatile strategy provides a platform to fabricate graphene oxide based nanomaterials for biosensor applications.  相似文献   

17.
The compositional flexibility of emulsions, via surfactant and additive choice, has been the major reason for their recognition as tuneable delivery sources for a variety of drugs. In particular, the kinetically stable nanoemulsions (NE) are preferred to minimize the toxicity extents of several poorly hydrophobic drugs through variation in their delivered extents. Inspired by these specialties, we have optimized our curcumin (curc) loaded sodium dodecylsulpahte (SDS) and dodecyl trimethylammonium bromide (DTAB) stabilized mustard oil microemulsions (ME) which catalyzed the pro-oxidant (with ethanol only) to antioxidant graphene oxide (GO) structural expression. The GO was synthesized using wet chemical approach, using ubiquitous graphite flakes as raw material. GO was loaded into 1:1 mixtures of (separately made) SDS and DTAB curc loaded formulations (CLFs). Henceforth, the resultant formulation contained 60% (1:1 SDS and DTAB) CLF mixture and ethanol dispersed GO (@ 1 mg/mL) as the other component. Compared to an insignificant (~47%) free state (while being dispersed in ethanol) DPPH free radical scavenging, the GO dispersed in CLFs enabled (62.47–100.96)% increments in DPPH scavenging, with 94.45% as maximum neutralization extent. The (493.57–3154.95)% particle size increments and (40.64–92.70)% PDI decrements for GO supplemented formulation over SDS and DTAB CLF mixtures, have inferred a wider curc distribution, through the larger GO surface area (SA) and its augmented oxygen enhanced chemical controls. In support, the physicochemical variations, characterized by (1.77–21.23)% γ decrements, (63.56–98.08%) and (68.90–163.22)% η and σ increments, have complemented the dispersion enhancing GO activities. Considering the bioactive nature of curc, these observations predict a prevalence of native curc structure or its enhanced non-covalent interaction controls with GO. Edible nature of mustard oil alongwith frequent inclusion of SDS and DTAB in routine gadgets, propel our formulations as robust media for attaining desired structural activities of functionalized GO derivatives.  相似文献   

18.
The graphene oxide (GO) is carbon based material that has high surface area, high adsorption ability, and is stable at high temperature. In this work, the GO phase was prepared and used for gas chromatographic separation. GO nanosheets were covalently bonded onto the inner surface of fused silica capillary column using 3-aminopropyldiethoxymethyl silane as cross-linking agent. The prepared GO nanosheets were characterized with TEM and the GO coating was characterized with SEM. As a high performance stationary phase, GO provides not only a high surface area to increase the phase ratio but also rich functional groups for the formation of hydrophobicity, hydrogen bonding, and π–π electrostatic stacking interactions with volatile aromatic or unsaturated organic compounds. Thus, mixtures of a wide range of organic compounds including alcohols and aromatic compounds were well separated and an efficiency of 1990 theoretical plates per meter for anisole was obtained on GO coated 1.0 m × 200 μm i.d. fused silica capillary column. The experimental results demonstrate that GO coated capillary columns are promising for gas chromatographic separation.  相似文献   

19.
We have performed FTIR transmission microspectroscopy on graphene oxide papers oriented with the nominal lattice planes parallel to the infrared optical axis. By polarising the IR light for samples of this geometry, spectral contributions of oriented oxide species are isolated from broad convoluted bands. Analysing the data alongside previous works, including experiments where samples were perturbed by reduction, dehydration and deuteration, we tabulate the most likely assignments for the observed spectral bands.  相似文献   

20.
Fluorescent magnetic graphene oxide hybrid materials have been fabricated by a multistep method. X-ray diffraction, transmission and scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, vibration sample magnetometry, and energy dispersive spectroscopy were used to characterize the resulting material. The results showed that the materials have a saturation magnetization value of 22.0 emu/g at room temperature and exhibit a symmetrical and narrow emission peak at 544 nm. The resultant materials are able to carry an anti-cancer drug, 5-fluorouracil, with a load capacity of 0.24 mg/mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号