首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent improvements based on heterojunction nanocomposites have opened new possibilities in photocatalysis. In this research, an ultrasound‐assisted coprecipitation method was used to fabricate silver, zinc sulfide and reduced graphene oxide (Ag‐ZnS/rGO) nanocomposite, and characterization results indicated that 3% Ag‐ZnS spherical nanoparticles are successfully embedded in rGO matrix. The potential of the Ag‐ZnS/rGO, as a visible light active photocatalyst, was assessed through optimizing degradation of Tetracycline (TC) by response surface methodology. It was found that the photocatalytic degradation of TC increased with an increase in the amount of nanocomposite and irradiation time, whereas it decreased with increasing the initial TC concentration. Under the optimal conditions (10 mg L?1 of TC, 1.25 g L?1 of Ag‐ZnS/rGO, at pH = 7, and irradiation duration 110 min), more than 90% of the TC was degraded. The study of the mechanism of the photocatalytic process disclosed that the synergistic role of surface plasmon resonance (SPR) induced by Ag nanoparticles and p‐type semiconductor feature of rGO leads to ZnS semiconductor stimulation in the visible light region. Eventually, a pseudo‐first order kinetics model was developed based on the proposed mechanism. The obtained results highlight the role of Ag‐ZnS/rGO nanophotocatalyst toward degradation of some antibiotics under visible light.  相似文献   

2.
Multifunctional epoxy‐polydimethylsiloxane nanocomposite coatings with antifouling and anticorrosion characteristics have been developed via in situ polymerization method at different loading (1, 3, and 6.5 wt.%) of ZnO nanoparticles to cater marine applications. A detailed comparative analysis has been carried out between epoxy‐polydimethylsiloxane control (EPC) and ZnO‐reinforced coatings to determine the influence of ZnO loading on various properties. The incorporation of ZnO in EPC led to increase in root mean square (RMS) roughness to 126.75 nm and improved hydrophobicity showing maximum contact angle of 123.5° with low surface energy of 19.75 mN/m of nanocomposite coating as compared with control coating. The differential scanning calorimetry (DSC) result indicated improved glass transition temperature of nanocomposite coatings with highest Tg obtained at 83.69°C in case of 1 wt.% loading of ZnO. The increase in hydrophobicity of the system was accompanied by upgraded anticorrosion performance exhibiting 98.8% corrosion inhibition efficiency (CIE) as compared with control coating and lower corrosion rate of 0.12 × 10?3 mm/year. The Taber abrasion resistance and pull‐off adhesion strength results indicated an increment of 34.7% and 150.7%, respectively, in case of nanocomposite coating as compared with the control coating. The hardness of nanocomposite coatings was also improved, and maximum hardness was found to be 65.75 MPa for nanocomposite coating with 1 wt.% of ZnO. Our study showed that the nanocomposite coating was efficient in inhibiting accumulation of marine bacteria and preventing biofouling for more than 8 months. The developed environment‐friendly and efficient nanocomposite material has a promising future as a high‐performance anticorrosive and antifouling coating for marine applications.  相似文献   

3.

This work reports an innovative, effortless and inexpensive method for the preparation of ZnO nanoparticles by green approach using leaf extract of Piper betleas a reducing-stabilizing negotiator. The prepared ZnO NPs were characterized through XRD, FTIR, UV–Visible spectroscopy, and EDX etc. The band gap energy of the sample was estimated as 3.41 eV which is larger than the bulk ZnO (Eg?=?3.37 eV). The observed blue shift is attributed to the quantum confinement of excitons. FTIR analysis showed the presence of alkaloids, flavonoids, polyphenols, and terpenoid. TEM analysis showed that each nanoparticle comprised of 1 to 2 nano-crystallites. Photocatalytic activity results revealed that ZnO-NPs prepared through green synthesis route were found to be efficient in the degradation of toxic reactive red dye with degradation efficiency of 96.4% having high photodegradation rate-constant of 1.6?×?10–2 min?1. As an antimicrobial agent, the ZnO NPs are effective against both gram-positive (Bacillus subtilis) and negative bacteria (Escherichia coli), with the zones of clearance as 16.4 and 14.3 mm, respectively. Therefore, present research signifies an effective approach to utilize as-prepared ZnO NPs as efficient photocatalysts as well as antimicrobial agent.

  相似文献   

4.
Herein the present article reports the fabrication of ZnO/reduced graphene oxide (ZnG) nanohybrid following a reduction-based process using a non-hazardous material, i.e., ascorbic acid. The morphology, structure, and bonding in the nanohybrid were analyzed using different techniques. Atomic force microscopy and scanning electron microscopy images show spherical particles of ZnO distributed over reduced graphene oxide (rGO). The X-ray diffraction analysis gives calculated values of crystallite size for ZnO as 15.62 nm. The successful incorporation of ZnO nanoparticles into rGO was confirmed using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses. The electrochemical studies were performed using an electrolyte (0.5 M H2SO4). The calculated value of specific capacitance for the nanohybrid was 345 Fg-1, which was found to be almost double as compared to that of rGO, which is having a value of only 190.5 Fg-1 at the same scan rate. The nanohybrid also showed excellent capacitance retention after 1,000 cycles.  相似文献   

5.
In this study, a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag (PANI/PVA/Ag) has been successfully synthesized. The chemical reduction method was used to produce Ag nanoparticle colloidal solution from Ag+ ions. The polymerization of aniline occurred in situ for the preparation of polyaniline (PANI) in the presence of ammonium persulfate. With exposure to Ag nanoparticles on the PANI/PVA composite, a new nanocomposite was obtained. The morphology and particle size of the novel nanocomposite was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) analyses. According to XRD analysis, the size of nanoparticles was found to be in the range of 10–17 nm. SEM images showed the favored shape of nanoparticles as triangle which is a benign shape for antibacterial analysis. The antibacterial activity of the obtained nanocomposite was also evaluated against Gram positive bacteria Staphylococcus aureus (Staph. aureus) and Gram negative Escherichia coli (E. coli) using the paper disk diffusion method. The antibacterial study showed that the PANI/PVA composite did not have a very good antibacterial activity but PANI/PVA/Ag nanocomposites were found to be effective against two bacteria.  相似文献   

6.
This study reports the electrochemical synthesis, antimicrobial and catalytic activity of copper-arabinoxylan nanocomposite. The synthesis was achieved without use of any hazardous reducing and stabilizing agent. The spherical copper nanoparticles (size approx. 40 nm) dispersed in the arabinoxylan matrix as they formed and got stabilized. In the absence of arabinoxylan the particles rapidly converted to copper oxide suggesting a high stability for the composite. Electrolysis was carried out with copper plate as the sacrificial anode, carbon rod as the cathode and sodium nitrate (1.00 % in 1 % arabinoxylan suspension) as an electrolyte. The copper nanoparticles dispersed in arabinoxylan were characterized by surface plasmon resonance spectroscopy, X-ray diffraction, electron microscopy and zeta potential measurements. The synthesized composite exhibited good antimicrobial activity against P. aeruginosa, Staph. aureus and E. coli and a catalytic activity in conversion of CO2 to methanol.  相似文献   

7.
Pulsed laser ablation in liquid (PLAL) has verified its surpassing advantages in the fabrication of several high purity nanostructured metals and metal oxides. In this work, ZnO/CuO heterostructure nanocomposites have been fabricated by laser ablation a Q switched Nd: YAG laser beam (1064 nm, 10 Hz, pulse energy and pulse with 30 mJ and 10 ns) is focused on the surface of the ZnO thin film for 10 min. The fabricated ZnO/CuO nanocomposite was then characterized using transmission electron microscopy (TEM), UV–vis spectrophotometer, X-ray diffraction (XRD), and Raman spectroscopy to investigate the structural, compositional, and optical properties of the fabricated nanocomposite. The synthesized nanocomposites were evaluated as antibacterial agents against both the gram-positive bacterium S. aureus subsp. aureus ATCCBAA-977, and the gram-negative bacteria E. coli ATCC8739, K. pneumoniae subsp. pneumoniae ATCC700603, and P. aeruginosa ATCC27853. The as-fabricated ZnO/CuO nanocomposite demonstrated outstanding antibacterial activity except in the case of K. pneumoniae subsp. pneumoniae ATCC700603 while the maximum activity was observed against E. coli ATCC8739.  相似文献   

8.
《印度化学会志》2023,100(2):100920
In the present work, silver-doped ZnO (Ag–ZnO NPs) with different concentrations of silver ions (0.3, 0.5, 1.0 and 1.5 mol %) were synthesized by using a simple co-precipitation method. The Ag–ZnO NPs were primarily characterized by XRD, FT-IR, SEM, EDS, TEM, UV–Vis. DRS, PL and BET surface area. The XRD analysis of Ag–ZnO NPs shows a wurtzite structure and optimized Ag–ZnO NPs (1.0 mol %) exhibit a lower crystallite size of 15.96 nm than that of bare ZnO (19.07 nm). Optical study shows a decrease in band gap from 3.13 to 2.97 eV as the concentration of Ag ions increases from 0.3 to 1.5 mol%. TEM images reveal the spherical shape particle with sizes ranging between 10 and 15 nm. From the multipoint BET plot, the surface area of Ag–ZnO NPs found 38.06 m2/gwhich is higher than the ZnO NPs (34.48 m2/g). The photocatalytic study demonstrated that the Ag–ZnO NPs (1.0 mol %) has an excellent photodegradation efficiency of Methyl Orange (96.74%)with a 26% increment as compared to bare ZnO (70.47%). Furthermore, the bactericidal activity of Ag–ZnO NPs (1.0 mol %) was investigated against four different bacterial strains. The results explored that the Gram-negative bacteria (E. coli and P. vulgaris) are more sensitive than Gram-positive (S. aureus and B. cereus) to Ag–ZnO NPs. Overall, the anticipated material is economical and reusable for photodegradation and antibacterial activity.  相似文献   

9.
Photosensitizer-functionalized reduced graphene oxide (rGO) nanoparticles are promising materials for photodynamic therapy in cancer management. In this study, rGO is synthesized by a green route employing glucose as the reducing agent and functionalized with photosensitizer, protoporphyrin IX (PPIX) in a convenient, single-step procedure. PPIX-functionalized rGO exhibits photodynamic effect against cancer cells (HeLa) at 0.001 mg mL−1 under visible light illumination (635 nm). A 50% elimination of HeLa cells after 5 min irradiation is observed while very low phototoxicity (80% cell viability) is noted against normal dermal fibroblast cells. A positive correlation with ROS accumulation and increased expression of caspase-3 in PPIX-functionalized rGO-treated cancer cells is also established. The results evidence a simple and cost-effective route for developing photosensitizer-functionalized rGO for effective and selective killing of cancer cells.  相似文献   

10.
Photodegradation of organic pollutants strongly depends on design of metal oxide semiconductor photocatalysts. Graphene, if composited with ZnO, can effectively enhance its photocatalytic performance for the eradication of pollutants from aqueous medium. Here in, ZnO-rGO is reported as highly active catalyst for degradation of methylene blue. A 200-mg/L solution of methylene blue dye was completely degraded within 1 h in comparison to 74% and 56% degradation over ZnO and rGO, respectively. The commonly used mechanisms of heterogeneous catalytic reactions, the Langmuir-Hinshelwood mechanism, and the Eley-Rideal mechanisms, were used to describe the reaction kinetics. The Langmuir-Hinshelwood mechanism was found as more favorable in this study. Apparent activation energy, Eap, true activation energy, ET, entropy, ΔS, and enthalpy, ΔH were calculated as 36.2 kJ/mol, 13.1 kJ/mol, 197.5 J/mol, and 23.1 kJ/mol, respectively.  相似文献   

11.
Polyethersulfone (PES) has been widely used in membrane technology and used to purify water in water treatments application or as a dialyzer to purify blood in hemodialysis. In this work, PES was chemically modified by separately grafting two biomolecules, 4‐aminobenzenesulfonamide (ABS), and 4‐amino‐N‐(5‐methylisoxazol‐3‐yl)benzenesulfonamide (AMBS), on PES backbone, and these modified membranes were blended to unmodified PES, in 1:1 ratio, in order to obtain PES‐b‐PES‐ABS and PES‐b‐PES‐AMBS membranes. The first aim of this study is to measure the anticoagulant properties of the modified membrane by measuring the activated partial thromboplastin time (APTT) and prothrombin time (PT). The second aim of the study is to evaluate the antifouling properties of the modified PES membranes by examining its antimicrobial activity against two Gram‐negative bacteria, which are Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli); two Gram‐positive bacteria, which are Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus); and a fungus, which is Candida albicans (C. albicans). The results showed that grafting of ABS and AMBS improved overall the hydrophilicity properties of the modified PES membranes. PES‐b‐PES‐ABS membranes showed better anticoagulant properties with 13 seconds for PT and 38 seconds for APPT, in comparison with the control sample (pure plasma), which showed 12 seconds for PT and 30 seconds for APPT. For antimicrobial tests, both PES‐b‐PES‐ABS and PES‐b‐PES‐AMBS membranes did not show any antibacterial activity, but when zinc oxide (ZnO) nanoparticles were added to the modified PES membranes in concentrations between 3% to 5% w/w, PES‐b‐PES‐ABS‐ZnO (M‐4 and M‐5), and PES‐b‐PES‐AMBS‐ZnO (M‐8 and M‐9) nanocomposite membranes showed antibacterial activity against P. aeruginosa and S. aureus.  相似文献   

12.
Zinc oxide hollow nanospheres were obtained via a Laux-like oxidation of zinc nanoparticles using nitrobenzene as oxidizing agent. The ZnO hollow nanospheres exhibit an outer diameter of 10.4 ± 1.3 nm and a well crystallized sphere wall with a thickness of 2.9 ± 0.4 nm. Laux-like oxidation and formation of the ZnO hollow nanospheres were performed instantaneously after sodium naphthalenide ([NaNaph]) driven reduction of ZnCl2 to Zn0 nanoparticles in the liquid phase without any separation of the intermediate Zn0 nanoparticles. The diameter of the resulting ZnO hollow nanospheres (10.4 ± 1.3 nm) reflects the diameter of the intermediate Zn0 nanoparticles (10.1 ± 2.3 nm). In accordance with the small diameter of the ZnO sphere wall, quantum-size effects occur with a band gap that is blue-shifted by 0.2 eV in comparison to bulk-ZnO.  相似文献   

13.
Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g−1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g−1) than that of bare Co3O4 (100 F g−1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM−1cm−2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.  相似文献   

14.
Metal oxide frame works along with carbon materials have been attracting tremendous attention of researches as the potential materials for energy and environmental remediation. In the present work heterostructures of (ZnO/CuO)/rGO ternary nanocomposites were synthesized by solid-state method. The crystalline structure of the nanoparticles was obtained from the XRD analysis. Optical band gap of the ZnO nanoparticles (3.1 eV) is tuned to 2.8 eV in the synthesized (ZnO/CuO)/rGO ternary nanocomposites. Field emission scanning electron microscope images of the (ZnO/CuO)/rGO ternary nanocomposites revealed formation of well-developed flowers like morphology of (ZnO/CuO) nanoparticles on rGO sheets. Photoluminescence spectroscopy analysis of (ZnO/CuO)/rGO ternary nanocomposites show enhancement in the electron-hole pair separation and thereby diminishing electron-hole pairs recombination rates effectively. In the present work, the photocatalytic activity of the ZC3G15 ternary nanocomposites show 99% and 93% of degradation efficiency respectively against RhB dye and 4-chlorophenol for 20 min under visible light irradiation. Thus, the simple solid-state method provides the effective ternary nanocomposites heterostructures light harvesting material for energy and environmental remediation.  相似文献   

15.
This article explores green synthesis as a strategic and sustainable route to fabricate potent zinc oxide nanoparticles. Natural green based antibacterial agents and alternatives are being introduced in the market however there is a dearth in green approach moringa based zinc oxide nanoparticles in personal care products and establishing efficacy. Moringa oleifera comprises various phytochemicals that act as non-toxic stabilizing and reducing agents. Green synthesized ZnO nanoparticles (GsZnO-Nps) were investigated for their morphological and physicochemical properties using various advanced characterizing techniques. The hexagonal wurtzite structure of GsZnO-Nps is determined by X-ray diffractometry (XRD), the average crystallite size is 13.82 nm, total crystallinity was 95.91 % and high specific-surface-area is 77.38 m2/g. Scanning Electron Microscope (SEM) revealed the formation of spherical nanoparticles having a diameter of 50 nm. UV–vis spectrum shows high bandgap energy of 3.36 eV. Results have shown that antioxidant efficacy of GsZnO-Nps is significantly higher than AR-Grade ZnO, evaluated by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. Half-maximal inhibitory concentration (IC50) of GsZnO-Nps was 21.72 µg/mL and AR-Grade ZnO was 345.57 µg/mL. GsZnO-Nps (0.0183 g/mL) shows robust anti-acne efficacy against Cutibacterium acne (C. acne) organism which estimated by ZOI technique, have average ZOI of 33 mm, with standard error 0.577 mm. Antibacterial efficacy of GsZnO-Nps was established at different concentrations (10, 50, 100, and 200 µg/mL) against Gram-positive and Gram-negative pathogens by zone-of-inhibition (ZOI) method with respect to standard drugs. GsZnO-Nps at 200 µg/mL exhibits high ZOI of 26.75 mm against Escherichia coli (E. coli) and ZOI of 30 mm against Staphylococcus aureus (S. aureus) organisms respectively which is comparatively higher or equal to standard drugs. The minimum inhibitory concentration (MIC) of GsZnO-Nps is 500 µg/mL to inhibit the microbe's growth. GsZnO-Nps established the added benefits of moringa phytochemicals and is an excellent approach to developing eco-friendly and multi-functional versatile products having strong antioxidants, anti-acne and advanced antibacterial efficacy for numerous industrial applications like cosmetic, health hygiene products, drugs, therapeutic etc.  相似文献   

16.
Green synthesis gaining a significant importance for the preparation of nanoparticles (NPs) and NPs-based biocomposites gained much attention in biological applications. In the current study, gold (Au) nanoparticles were prepared via green approach using cinnamon extract. The Au nanocomposite (NC) was prepared with MnO2 nanofiber mesh structure. The NC was characterized by XRD, SEM, FT-IR, EDX, UV–visible and DLS techniques. The MnO2 nanofibers diameter was in 10–25 nm range, which was arranged in a mesh form and Au NPs was combined with nanofibers randomly. The MnO2-Au NC antimicrobial activity was measured against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus strains. The antimicrobial activity of MnO2-Au NC was highly promising against tested microorganisms in comparison to control (ciprofloxacin, a standard drug). The antimicrobial activity of MnO2-Au NC was found in following order; > S. aureus > E. coli > P. aeruginosa with the zones inhibition of 22, 18 and 15 (mn), respectively. The MIC (minimum inhibitory concentration) values were 316, 342 and 231 (µg/mL) for E. coli, P. aeruginosa and S. aureus, respectively. In view of promising antimicrobial activity, the MnO2-Au NC prepared via green approach could have potential applications in medical field and future study can be engrossed on the biocompatibility evaluation of MnO2-Au NC using bioassays.  相似文献   

17.
ZnO (Z-1), Co-doped ZnO (Z-2), and Co-doped ZnO/rGO (Z-3) nanocomposites are successfully synthesized using a solvothermal method and investigated toward the photoreduction of CO2 to CH3OH. The as-prepared ZnO (Z-1), Co-doped ZnO (Z-2), and Co-doped ZnO/rGO (Z-3) nanomaterials are characterized by a range of spectroscopic, imaging, and thermal techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray analysis, thermogravimetry analysis-differential thermal calorimetry, UV–Vis diffuse reflectance spectroscopy, scanning electron microscopy, and transmission electron micrograph. It was found that Z-3 presented a higher CH3OH rate of 30.1 μmol/g compared with Z-2 (27.3 μmol/g) and Z-1 (7.5 μmol/g). Enhanced catalytic activity of Z-3 over other samples was because of the combined effect of the amount of Co, reduced graphene (rGO), and surface area (10.62 m2/g). Theoretical calculation revealed that photocatalytic activity has some relationship with the ELUMO = ?2.922 eV (doped ZnO). The results can not only provide an important indication about the influence of Co and rGO on the activity of CO2 photoreduction over ZnO but also demonstrate a strategy for tuning the CO2 photoreduction performance. Our work may lay the groundwork for directing the future design of efficient metal-modified ZnO photocatalysts for CO2 reduction.  相似文献   

18.
A new and simple direct precipitation method assisted with ultrasonic agitation was proposed for the preparation of spherical ZnO nanoparticles. The size of the ZnO nanoparticles, 10 nm to 85 nm, was tuned through controlling the calcination temperature and changing the ratio of the reactants. The resonant light scattering (RLS) of the ZnO nanoparticles dispersed/suspended in aqueous solution of Triton X-100 was studied under room temperature. It was found that the ZnO nanoparticles of different size or concentration all have a characteristic RLS peak at 387 nm. Under optimal conditions, the RLS intensity was proportional to the ZnO concentration in the range of 7.3 × 10?8–1 × 10?4 mol L?1, while the cubic root of the RLS intensity was found to be proportional to the size of ZnO nanoparticles. Further, the quantitative relationship of the size of the ZnO nanoparticles versus the calcination temperature was derived, and this could be used to forecast/control the nano-size in the nano-ZnO preparation.  相似文献   

19.
In this study, a simple chemical precipitation method was used to synthesize ZnO: Co2+ as nanoparticles. The solution casting technique was used for the preparation of polymer films of Carboxymethyl cellulose (CMC) doped with different contents (0.5, 1.5, 3, and 5 wt%) of ZnO/Co NPs. As shown by the X-ray diffraction, the average size of ZnO/Co crystallite of the NPs is 25.6 nm. Meanwhile, the addition of ZnO/Co reduced the semi-crystallinity of CMC. The Fourier transform infrared (FTIR) confirmed the interaction between the ZnO/Co NPs and the polymer CMC. The direct and indirect band gap (Eg) was reduced from (5.32–5.01 eV and 5.20 to 4.99 eV respectively) with the increase in ZnO/Co NPs content up to 3 wt% after this content the Eg is increased as shown by the UV–Vis spectra. In addition, the results of TGA displayed the decomposition of the nanocomposite to be little compared to that of the pure CMC indicating the success of fabrication of products. The improvement of the ionic conductivity was noticed upon the addition of ZnO/Co NPs into the polymer CMC system which can be explained in terms of an increase in amorphicity as shown by the impedance spectroscopic study. It was found that the optimum ionic conductivity (3.209 × 10−6 Scm−1) at ambient temperature was higher for the sample containing 1.5 wt% ZnO/Co NPs with highest of amorphicity and the lowest total loss of weight. Therefore, the improvements in optical properties, thermal stability, and AC conductivity which were observed represent a strong support for the use of the nanocomposite films in the solid state battery applications.  相似文献   

20.
Nowadays, the industrial wastewater pollutants including toxic dyes and pathogenic microbes have caused serious environmental contaminations and human health problems. In the present study, eco-friendly and facile green synthesis of Ag modified ZnO nanoparticles (ZnO-Ag NPs) using Crataegus monogyna (C. monogyna) extract (ZnO-Ag@CME NPs) is reported. The morphology and structure of the as-biosynthesized product were characterized by field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), differential reflectance spectroscopy (DRS), dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDS) techniques. TEM and FESEM images confirmed the oval and spherical-like structure of the products with a size of 55–70 nm. The EDS analysis confirmed the presence of Zn, Ag, and O elements in the biosynthesized product. The photocatalytic results showed ZnO-Ag@CME NPs were degraded (89.8% and 75.3%) and (94.2% and 84.7%) of methyl orange (MO) and basic violet 10 (BV10), under UV and sunlight irradiations, respectively. The Ag modified ZnO nanoparticles exhibited enhanced catalytic activity towards organic pollutants, and showed better performance than the pure ZnO nanoparticles under UV and sunlight irradiations. This performance was probably due to the presence of silver nanoparticles as a plasmonic material. Antibacterial activity was performed against different bacteria. ZnO-Ag@CME NPs showed high antibacterial activity against K. pneumoniae, S. typhimurium, P. vulgaris, S. mitis, and S. faecalis with MIC values of 50, 12.5, 12.5, 12.5, and 12.45 µg/mL, respectively. All in all, the present investigation suggests a promising method to achieve high-efficiency antibacterial and catalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号