首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, one of the analogous metal organic frameworks (MOFs) with UiO-66(Zr) topology receiving wider attention is UiO-66(Ce), which exhibits interesting properties and high thermal and chemical stability. Hence, in the present work, UiO-66(Ce) is synthesized by adopting an earlier procedure and characterized by series of spectroscopic techniques like UV-visible (UV-Vis), Fourier transform infrared (FT-IR), Raman and scanning electron microscope (SEM) to confirm its structural features and crystallinity using powder X-ray diffraction (XRD) and these results are in close agreement with other reports. The catalytic performance of UiO-66(Ce) was evaluated in the Friedel–Crafts alkylation reaction between β-nitrostyrene and indole to obtain heterocyclic compounds with biological activity. A series of control experiments indicate that Ce4+ located within the framework plays an important role in promoting this reaction and its activity is found to be much superior to that of UiO-66(Zr). This enhanced activity with Ce4+ compared to Zr4+ is attributed due to the higher oxophilicity of Ce4+, which can readily bind with an oxygen-containing substrate such as β-nitrostyrene. The leaching test confirms the heterogeneity of the reaction and the catalyst can be reused three times with identical activity to the fresh solid. UiO-66(Ce) shows wide substrate scope with high yields of the desired product. A proposed mechanism is also discussed.  相似文献   

2.
UiO-66-NH2-IM, a fluorescent metal-organic framework (MOF), was synthesized by post-synthetic modification of UiO-66-NH2 with 2-imidazole carboxaldehyde via a Schiff base reaction. It was examined using various characterization techniques (PXRD, FTIR, NMR, SEM, TGA, UV-Vis DRS, and photoluminescence spectroscopy). The emissive feature of UiO-66-NH2-IM was utilized to detect volatile organic compounds (VOCs), metal ions, and anions, such as acetone, Fe3+, and carbonate (CO32−). Acetone turns off the high luminescence of UiO-66-NH2-IM in DMSO, with the limit of detection (LOD) being 3.6 ppm. Similarly, Fe3+ in an aqueous medium is detected at LOD=0.67 μM (0.04 ppm) via quenching. On the contrary, CO32− in an aqueous medium significantly enhances the luminescence of UiO-66-NH2-IM, which is detected with extremely high sensitivity (LOD=1.16 μM, i. e., 0.07 ppm). Large Stern-Volmer constant, Ksv, and low LOD values indicate excellent sensitivity of the post-synthetic MOF. Experimental data supported by density functional theory (DFT) calculations discern photo-induced electron transfer (PET), resonance energy transfer (RET), inner filter effect (IFE), or proton abstraction as putative sensing mechanisms. NMR and computational studies propose a proton abstraction mechanism for luminescence enhancement with CO32−. Moreover, the optical behavior of the post-synthetic material toward analytes is recyclable.  相似文献   

3.
The Ce3+ activated phosphors Ca4Si2O7F2:Ce3+ are prepared by a solid state reaction technique. The UV–vis luminescence properties as well as fluorescence decay time spectra are investigated and discussed. The results revealed that there were two kinds of Ce3+ luminescence behavior with 408 and 470 nm emissions, respectively. Under 355 nm excitation, the Ce(1) emission (408 nm) is dominant at low doping concentration, and then the Ce(2) emission (470 nm) get more important with increasing of Ce3+ concentrations in the host. The phosphors Ca4Si2O7F2:xCe3+ show tunable emissions from blue area to green-blue area under near-ultraviolet light excitation, indicating a potential application in near-UV based w-LEDs.  相似文献   

4.
Fibrous Ti/Ce oxide photocatalysts were prepared for the first time by a biomimetic solution process using short flax fibers (flax straw processing waste) as a biotemplate. Titanium polyhydroxy complex solutions with 3% and 5% cerium were used as precursors. Flax fibers were impregnated in an autoclave under hydrothermal conditions. Ti/Ce oxides were obtained from the biotemplate by annealing at 600 °C. The photocatalytic activity of the Ti/Ce oxides was studied by the adsorption and decomposition of the dye rhodamine B under UV irradiation. The photocatalytic decomposition of the dye was 50% and 75% faster for Ti/Ce oxides with 3% and 5% Ce, respectively, than for the analogous undoped fibrous TiO2. The morphologies, textures, and structures of the photocatalysts were studied by scanning electron microscopy, low temperature N2 adsorption/desorption, UV-Vis spectroscopy, and X-ray and XPS analytical methods. It was shown that the introduction of Ce into the precursor solution increased the surface irregularity of the Ti/Ce oxide crystallites compared to pure TiO2. This effect scaled with the Ce concentration. Ce improved the UV light absorption of the material. The Ti/Ce oxides contained Ce4+/Ce3+ pairs that played an important role in redox processes and intensified the photocatalytic activity.  相似文献   

5.
A mononuclear nonheme manganese(IV)–oxo complex binding the Ce4+ ion, [(dpaq)MnIV(O)]+–Ce4+ ( 1 ‐Ce4+), was synthesized by reacting [(dpaq)MnIII(OH)]+ ( 2 ) with cerium ammonium nitrate (CAN). 1 ‐Ce4+ was characterized using various spectroscopic techniques, such as UV/Vis, EPR, CSI‐MS, resonance Raman, XANES, and EXAFS, showing an Mn?O bond distance of 1.69 Å with a resonance Raman band at 675 cm?1. Electron‐transfer and oxygen atom transfer reactivities of 1 ‐Ce4+ were found to be greater than those of MnIV(O) intermediates binding redox‐inactive metal ions ( 1 ‐Mn+). This study reports the first example of a redox‐active Ce4+ ion‐bound MnIV‐oxo complex and its spectroscopic characterization and chemical properties.  相似文献   

6.
The adsorption of SO2 gas on ceria solid at room temperature has been investigated by thermal analysis, Raman spectroscopy and electron paramagnetic resonance (EPR). The results confirm that SO2 transformation into sulphate species occurs at 25°C with a concomitant reduction of Ce4+ to Ce3+ ions. The formation of Ce(III)-sulphate phase has been evidenced on ceria surface. The thermal analysis revealed a complete decomposition of cereous sulphate phase to CeO2 at 785°C. The change of oxidation state of Ce(IV) to Ce(III) during the formation of sulphate phase has been confirmed also by EPR technique. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Bright red luminescence is observed from Ce, Mn-doped glaserite-type alkaline-earth silicates with M2BaMgSi2O8 (M: Ba, Sr, Ca) chemical composition. Under UV excitation, Ce-doped M2BaMgSi2O8 exhibits strong near-UV emission with asymmetric peak shape. UV-excited Mn-doped M2BaMgSi2O8 compounds show visible red emission only when Ce3+ ions are doped together. These results indicate that Mn2+-derived red emission is caused by an efficient energy transfer from Ce3+ to Mn2+. The red emission becomes intense with an increase in Ba-amount. This trend originates from the relaxation of the selection rule for 3d-3d transition in Mn2+ ions, which is caused by the structural deformation due to Ba2+ occupation for layer-pockets.  相似文献   

8.
Ce and Al pillared clays were prepared by (i) pillaring Ce3+-exchanged montmorillonite with Al13 polycation (Ce-Al-PILC) and (ii) by pillaring Na-montmorillonite with an oligomer obtained from cohydrolysis of Ce3+ and Al3+ salts (Al-Ce-PILC). Cohydrolyzed oligomer gives larger intercalating species with Ce3+ incorporated in it. The UV-DRS spectrum of clay sample intercalated with this species shows four distinct absorption bands at 224, 263, 294 and 342 nm, which are attributed to the 4f-5d interconfigurational transitions of Ce3+ ions associated with alumina pillars.  相似文献   

9.
Nanosized cerium and nitrogen co-doped TiO2 (Ce–TiO2?xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N2 adsorption and desorption methods, photoluminescence and ultraviolet–visible (UV–vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in ?3 state in Ce–TiO2?xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce–O–Ti interface and also inhibits Ce particles from sintering. UV–visible DRS studies show that the metal–metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ → Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron–hole pair separation between the two interfaces Ce–TiO2?xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce–TiO2?xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce–TiO2?xNx was due to the participation of MMCT and interfacial charge transfer mechanism.  相似文献   

10.
In this study, a strategy that can result in the polyaniline (PANI) solely confined within the nanopores of a metal–organic framework (MOF) without forming obvious bulk PANI between MOF crystals is developed. A water-stable zirconium-based MOF, UiO-66-NH2, is selected as the MOF material. The polymerization of aniline is initiated in the acidic suspension of UiO-66-NH2 nanocrystals in the presence of excess poly(sodium 4-styrenesulfonate) (PSS). Since the pore size of UiO-66-NH2 is too small to enable the insertion of the bulky PSS, the quick formation of pore-confined solid PANI and the slower formation of well dispersed PANI:PSS occur within the MOF crystals and in the bulk solution, respectively. By taking advantage of the resulting homogeneous PANI:PSS polymer solution, the bulk PANI:PSS can be removed from the PANI/UiO-66-NH2 solid by successive washing the sample with fresh acidic solutions through centrifugation. As this is the first time reporting the PANI solely confined in the pores of a MOF, as a demonstration, the obtained PANI/UiO-66-NH2 composite material is applied as the electrode material for supercapacitors. The PANI/UiO-66-NH2 thin films exhibit a pseudocapacitive electrochemical characteristic, and their resulting electrochemical activity and charge-storage capacities are remarkably higher than those of the bulk PANI thin films.  相似文献   

11.
The new intermetallic cerium compound Ce2RuZn4 was synthesized from the elements in a sealed tantalum tube in a water‐cooled sample chamber of an induction furnace. Ce2RuZn4 crystallizes with a new structure type: P4/nmm, Z = 2, a = 719.6(1), c = 520.2(1) pm, wR2 = 0.0816, 273 F2 values and 15 variables. The structure contains two crystallographically independent cerium atoms: Ce1 with CN 16 (12 Zn + 4 Ce) and Ce2 with CN 14 (2 Ru + 8 Zn + 4 Ce). Based on the interatomic distances the two sites can be assigned to trivalent Ce1 and intermediate valent Ce2. The trivalent‐intermediate valent cerium ordering is underlined by magnetic susceptibility measurements. Ce2RuZn4 shows modified Curie‐Weiss behaviour in the temperature range 10–290 K with an experimental magnetic moment of 2.57(1) μB per formula unit. Thus only half of the cerium atoms are trivalent in Ce2RuZn4. A remarkable feature of the Ce2RuZn4 structure are short Ce2–Ru distances of 260 pm. The crystal chemistry of Ce2RuZn4 is discussed.  相似文献   

12.
Cerium intermetallic compounds exhibit anomalous physical properties such as heavy fermion and Kondo behaviors. Here, an ab initio study of the electronic structure, magnetic properties, and mixed valence character of Ce2Ni3Si5 using density functional theory (DFT) is presented. Two theoretical methods, including pure Perdew–Burke–Ernzerhof (PBE) and PBE + U , are used. In this study, Ce3+ and Ce4+ are considered as two different constituents in the unit cell. The formation energy calculations on the DFT level propose that Ce is in a stable mixed valence of 3.379 at 0 K. The calculated electronic structure shows that Ce2Ni3Si5 is a metallic compound with a contribution at the Fermi level from Ce 4f and Ni 3d states. With the inclusion of the effective Hubbard parameter (U eff), the five valence electrons of 5 Ce3+ ions are distributed only on Ce3+ 4f orbitals. Therefore, the occupied Ce3+ 4f band is located in the valence band (VB) while Ce4+ 4f orbitals are empty and Located at the Fermi level. The calculated magnetic moment in Ce2Ni3Si5 is only due to cerium (Ce3+) in good agreement with the experimental results. The U eff value of 5.4 eV provides a reasonable magnetic moment of 0.981 for the unpaired electron per Ce3+ ion. These results may serve as a guide for studying present mixed valence cerium‐based compounds. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
A series of modified montmorillonites including Zn2+ loaded montmorillonite (Zn/MMT), Ce3+ loaded montmorillonite (Ce/MMT) and Zn2+‐Ce3+ loaded montmorillonites (Zn‐Ce/MMT) were prepared by an ion‐exchange reaction, and characterized using X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), and scanning electron microscopy (SEM). The specific surface areas, zeta potentials and antibacterial activity of the modified montmorillonites were also investigated. Zinc and cerium were proved to be present as bivalent zinc state and trivalent cerium state in the modified montmorillonites. For the modified montmorillonites, the d001 basal spacings increased and the particles were formed of irregular shapes. The antibacterial activity of the modified montmorillonites was enhanced with the increase of specific surface areas and zeta potentials, and Zn2+‐Ce3+ loaded montmorillonites displayed obvious synergistic antibacterial effect. When Zn/Ce atomic ratio was 1.24, the Zn‐Ce/MMT showed high antibacterial efficiency and broad‐spectrum antibacterial activity, possessing the MIC against Escherichia coli, Staphylococcus aureus, Candida albicans and Mucor of 1500, 1000, 2000 and 3000 mg·L?1, respectively.  相似文献   

14.
Organometallic multi‐decker sandwich complexes containing f‐elements remain rare, despite their attractive magnetic and electronic properties. The reduction of the CeIII siloxide complex, [KCeL4] ( 1 ; L=OSi(OtBu)3), with excess potassium in a THF/toluene mixture afforded a quadruple‐decker arene‐bridged complex, [K(2.2.2‐crypt)]2[{(KL3Ce)(μ‐η66‐C7H8)}2Ce] ( 3 ). The structure of 3 features a [Ce(C7H8)2] sandwich capped by [KL3Ce] moieties with a linear arrangement of the Ce ions. Structural parameters, UV/Vis/NIR data, and DFT studies indicate the presence of CeII ions involved in δ bonding between the Ce cations and toluene dianions. Complex 3 is a rare lanthanide multi‐decker complex and the first containing non‐classical divalent lanthanide ions. Moreover, oxidation of 1 by AgOTf (OTf=O3SCF3) yielded the CeIV complex, [CeL4] ( 2 ), showing that siloxide ligands can stabilize Ce in three oxidation states.  相似文献   

15.
The acid strength of metal–organic frameworks plays a key role in their catalytic performance such as activity and selectivity during catalytic reactions. Solid-state nuclear magnetic resonance in combination with probe molecules including 2-13C-acetone and pyridine-d5 was employed to characterize the acid strength of UiO-66-X (X = -H, -2COOH, -SO3H). It was found that after introduction of the functional groups, the acid strength of UiO-66-2COOH and UiO-66-SO3H is considerably enhanced compared with that of parent UiO-66, with that of the former being similar to that of zeolite H-ZSM-5, and with that of the latter being slightly stronger than that of the former. Even though the acid density can efficiently be modified through changing the relative ratio in multivariate functionalized UiO-66-X, no significant alternation for the acid strength could be discerned in the MTV-UiO-66-X compared with acidic same-link counterpart. Theoretical calculations were employed to further confirm the acid strength of UiO-66-SO3H and UiO-66-2COOH.  相似文献   

16.
A UiO-66-NCS MOF was formed by postsynthetic modification of UiO-66-NH2. The UiO-66-NCS MOFs displays a circa 20-fold increase in activity against the chemical warfare agent simulant dimethyl-4-nitrophenyl phosphate (DMNP) compared to UiO-66-NH2, making it the most active MOF materials using a validated high-throughput screening. The −NCS functional groups provide reactive handles for postsynthetic polymerization of the MOFs into functional materials. These MOFs can be tethered to amine-terminated polypropylene polymers (Jeffamines) through a facile room-temperature synthesis with no byproducts. The MOFs are then crosslinked into a MOF–polythiourea (MOF–PTU) composite material, maintaining the catalytic properties of the MOF and the flexibility of the polymer. This MOF–PTU hybrid material was spray-coated onto Nyco textile fibers, displaying excellent adhesion to the fiber surface. The spray-coated fibers were screened for the degradation of DMNP and showed durable catalytic reactivity.  相似文献   

17.
Single Crystals of the Cerium(III) Borosilicate Ce3[BSiO6][SiO4] Colorless, lath‐shaped single crystals of Ce3[BSiO6]‐ [SiO4] (orthorhombic, Pbca; a = 990.07(6), b = 720.36(4), c = 2329.2(2) pm, Z = 8) were obtained in attempts to synthesize fluoride borates with trivalent cerium in evacuated silica tubes by reaction of educt mixtures of elemental cerium, cerium dioxide, cerium trifluoride, and boron sesquioxide (Ce, CeO2, CeF3, B2O3; molar ratio 3 : 1 : 3 : 3) in fluxing CsCl (700 °C, 7 d) with the glass wall. The crystal structure contains eight‐ (Ce1) and ninefold coordinated Ce3+ cations (Ce2 and Ce3) surrounded by oxygen atoms. Charge balance is achieved by both discrete borosilicate ([BSiO6]5– ≡ [O2BOSiO3]5–) and ortho‐silicate anions ([SiO4]4–). The former consists of a [BO3] triangle linked to a [SiO4] tetrahedron by a single vertex. The anions form layers in [001] direction alternatingly built up from [BSiO6]5– and [SiO4]4– groups while Ce3+ cations are located in between.  相似文献   

18.
Ce3 +-doped LuBO3 powders have been prepared by a sol–gel process with Ce3 + concentration varying between 0 and 5 mol%. These materials have been analyzed by X-ray Diffraction and Fourier Transform Infra Red Spectroscopy. The results confirm that all the materials have the vaterite type even if the calcination has been performed at 800°C. Furthermore, doping with Ce3 + ions does not affect the structure and the vaterite is preserved even at 5% doping. Scanning Electron Microscopy showed a very uniform morphology with small spherical grains with a narrow size distribution. Optical properties have been studied to confirm the effective substitution of Ce3 + for Lu3 + ions and to determine the materials scintillation performances. It has been shown that 0.5% is the optimum Ce(III) concentration in term of scintillation yield with an X-ray conversion yield equivalent to that of standard BGO (Bi4Ge3O12). The afterglow has also been measured and confirms the potential of these materials as scintillators.  相似文献   

19.
In present work, first, the water-stable metal–organic framework (MOF) nanocrystals, UiO-66-(F)4, were synthesized under green reaction condition and then some PES/PA thin-film nanocomposite (TFN) membranes were prepared using this synthesized nanocrystals (as modifier) and polyethersulfone (as the substrate). The obtained MOF and membranes were characterized by various characterization techniques such as FE-SEM, AFM, PXRD, contact angle measurements and FT-IR spectroscopy. Finally, the forward osmosis performance of the resultant membranes was evaluated by using different concentrations of NaCl as a draw solution and deionized water as a feed solution. Among all used membranes, the membrane with 0.1 wt% loading of UiO-66-(F)4 (TFN-2) was found to be an efficient composite membrane in the FO performance with high Jw and low Js/Jw.  相似文献   

20.
Apyrase is an important family of extracellular enzymes that catalyse the hydrolysis of high-energy phosphate bonds (HEPBs) in ATP and ADP, thereby modulating many physiological processes and driving life activities. Herein, we report an unexpected discovery that cerium-based metal–organic frameworks (Ce-MOFs) of UiO-66(Ce) have intrinsic apyrase-like activity for ATP/ADP-related physiological processes. The abundant CeIII/CeIV couple sites of Ce-MOFs endow them with the ability to selectively catalyse the hydrolysis of HEPBs of ATP and ADP under physiological conditions. Compared to natural enzymes, they could resist extreme pH and temperature, and present a broad range of working conditions. Based on this finding, a significant inhibitory effect on ADP-induced platelet aggregation was observed upon exposing the platelet-rich plasma (PRP) to the biomimetic UiO-66(Ce) films, prefiguring their wide application potentials in medicine and biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号