首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Insulin stimulates exocytosis of GLUT4 from an intracellular store to the cell surface of fat and muscle cells. Fusion of GLUT4-containing vesicles with the plasma membrane requires the SNARE proteins Syntaxin 4, VAMP2 and the regulatory Sec1/Munc18 protein, Munc18c. Syntaxin 4 and Munc18c form a complex that is disrupted upon insulin treatment of adipocytes. Munc18c is tyrosine phosphorylated in response to insulin in these cells. Here, we directly test the hypothesis that tyrosine phosphorylation of Munc18c is responsible for the observed insulin-dependent abrogation of binding between Munc18c and Syntaxin 4.  相似文献   

2.
SNARE complex formation underlies intracellular membrane fusion in eukaryotic organisms; however, the factors regulating the SNARE assembly are not well understood. The neuronal SNARE complex is composed of synaptobrevin2, SNAP-25, and syntaxin1, the latter being under tight control by the cytosolic protein Munc18. We found that the inhibition of syntaxin1 by Munc18 both in nerve terminals and in defined in vitro reactions can be overcome by specific detergents. This serendipitous finding led us to screen biologically relevant fatty acids, revealing that unsaturated arachidonic and linolenic acids can stimulate Munc18-regulated SNARE complex formation in a direct manner. The direct effect of arachidonic acid on the syntaxin1/Munc18 complex suggests a mechanism for the activation of the SNARE assembly pathway and provides a lead for the further investigation of fatty acids that may regulate SNARE-mediated membrane fusion in eukaryotes.  相似文献   

3.
Cyclin-dependent kinases such as Cdk4 are involved in the control of cell cycle progression, and misregulation of Cdk4 has been implicated in many types of cancers. In the present study, we report the development of a novel homogeneous assay using an affinity peptide-tagging technology for rapidly discovering Cdk4 inhibitors. The DNA sequence encoding a streptavidin recognition motif, or StrepTag (AWRHPQFGG), was cloned and expressed at the C-terminus of a fusion protein of a 152-amino acid hyperphosphorylation domain (Rb152) of the retinoblastoma protein (Rb) linked to GST at the N-terminus. This affinity peptide-tagged protein (GST-Rb152-StrepTag), which contains the two known phosphorylation sites of Rb, specifically phosphorylated by Cdk4 in vivo, was used as a substrate in the current in vitro kinase assay. After phosphorylation, scintillation proximity assay (SPA) scintillant beads coated with streptavidin were added. Radiolabeled GST-Rb152-StrepTag was brought in close proximity to the SPA scintillant beads through the interaction between StrepTag and streptavidin, resulting in the emission of light from beads. By applying the affinity peptide-tagging technology, we have eliminated the separation and wash steps which are normally required in a radioactive filtration assay. Therefore, this homogeneous method is simple, robust, and highly amenable to high-throughput screening of Cdk4-specific inhibitors. Furthermore, the affinity peptide tagging technique reported here is a simple, generic method that can be applied to many recombinant proteins for the development of kinase and protein-protein interaction assays.  相似文献   

4.
Biosensor technologies based on optical readout are widely used in protein–protein interaction studies. Here we describe a fast and simple approach to the creation of oriented interfacial architectures for surface plasmon resonance (SPR) transducers, based on conventional biochemical procedures and custom reagents. The proposed protocol permits the oriented affinity-capture of GST fusion proteins by a specific antibody which is bound to protein A, which in turn has been immobilized on the transducer surface (after the surface has been modified by guanidine thiocyanate). The applicability of the method was demonstrated by studying the interaction between retinoblastoma tumor suppressor protein (pRb) and MRS18-2 proteins. The formation of the pRb–MRS18-2 protein complex was examined and the pRb binding site (A-box–spacer–B-box) was mapped. We have also shown that MRS18-2, which was detected as the Epstein–Barr virus-encoded EBNA-6 binding partner using the yeast two-hybrid system, binds to pRb in GST pull-down assays.  相似文献   

5.
Agents that elevate cellular cAMP are known to inhibit the activation of phospholipase D (PLD). We investigated whether PLD can be phosphorylated by cAMP-dependent protein kinase (PKA) and PKA-mediated phosphorylation affects the interaction between PLD and RhoA, a membrane regulator of PLD. PLD1, but not PLD2 was found to be phosphorylated in vivo by the treatment of dibutyryl cAMP (dbcAMP) and in vitro by PKA. PKA inhibitor (KT5720) abolished the dbcAMP-induced phosphorylation of PLD1, but dibutyryl cGMP (dbcGMP) failed to phosphorylate PLD1. The association between PLD1 and Val14RhoA in an immunoprecipitation assay was abolished by both dbcAMP and dbcGMP. Moreover, RhoA but not PLD1 was dissociated from the membrane to the cytosolic fraction in dbcAMP-treated cells. These results suggest that both PLD1 and RhoA are phosphorylated by PKA and the interaction between PLD1 and RhoA is inhibited by the phosphorylation of RhoA rather than by the phosphorylation of PLD1.  相似文献   

6.
An approach for multiparallel target identification and relative quantification of in vitro kinase activities in two different biological samples, using liquid chromatography/mass spectrometry (LC/MS), is described. Synthetic target peptides, containing the putative regulatory phosphorylation sites of sucrose-phosphate synthase (SPS) isoenzymes from Arabidopsis thaliana, were simultaneously in vitro phosphorylated and their phosphorylation states determined. Quantification was achieved by stable isotope labeling of the phosphoserine moiety with ethanethiol and [(2)D(5)]-ethanethiol. This revealed different kinase activities in extracts of wild-type (WT) plants and mutant plants lacking plastidic phosphoglucomutase (PGM). The multiparallel assay allowed the determination of favored substrate specificities among the putative phosphorylation sites in SPS. Additionally, we extended the method to unambiguously identify phosphorylation sites in peptides via differential labeling.  相似文献   

7.
The peptide substrate specificity of Tie-2 was probed using the phage display method in order to identify efficient substrate for high throughput screening. Two random peptide libraries, pGWX3YX4 and pGWX4YX4, were constructed, in which all twenty amino acid residues were represented at the X positions flanking the fixed tyrosine residue Y. A fusion protein of GST and the catalytic domain of human Tie-2 was used to perform the phage phosphorylation. The phosphorylated phage particles were enriched by panning over immobilized anti-phosphotyrosine antibody pY20 for a total of 5 rounds. Four phage clones (3T61, 3T68, C1-90 and D1-15) that express a peptide sequence that can be phosphorylated by the recombinant catalytic domain of human Tie-2 were identified. Synthetic peptides made according to the sequences of the 4 selected clones from the two libraries, which had widely different sequences, were active substrates of Tie-2. Kinetic analysis revealed that D1-15 had the best catalytic efficiency with a k(cat)/K(m) of 5.9x10(4) M(-1) s(-1). Three high throughput screening assay formats, dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA), radioactive plate binding (RPB) and time-resolved fluorescent resonance energy transfer (TR-FRET) were developed to assess the suitability of these phage display selected peptides in screening Tie-2 inhibitors. Three out of four peptides were functional in the DELFIA assay and D1-15 was functional in the TR-FRET assay.  相似文献   

8.
Viral proteins of gamma-2 herpesviruses, such as LMP2A of Epstein Barr virus (EBV) and Tip of herpesvirus saimiri (HVS) dysregulate lymphocyte signaling by interacting with Src family kinases. K15 open reading frame of Kaposi's sarcoma associated herpesvirus (KSHV), located at the right end of the viral genome, encodes several splicing variants differing in numbers of transmembrane domains. Previously, we demonstrated that the cytoplasmic tail of the K15 protein interfered with B cell receptor signal transduction to cellular tyrosine phosphorylation and calcium mobilization. However, the detailed mechanism underlying this phenomenon was not understood. In the C-terminal cytoplasmic region of K15, putative binding domains for Src-SH2 and -SH3 were identified. In this study, we attempted to characterize these modular elements and cellular binding protein(s) by GST pull down and co-immunoprecipitation assays. These studies revealed that K15 interacted with the major B cell tyrosine kinase Lyn. In vitro kinase and transient co-expression assays showed that the expression of K15 protein resulted in activation of Lyn kinase activity. In addition, GST pull down assay suggested that the SH2 domain of Lyn alone was necessary for interaction with the C-terminal SH2B (YEEV) of K15, but the addition of Lyn SH3 to the SH2 domain increases the binding affinity to K15 protein. The data from luciferase assays indicate that K15 expression in BJAB cells induced NFAT and AP1 activities. The tyrosine residue in the C-terminal end of K15 required for the Lyn interaction appeared to be essential for NFAT/AP1 activation, highlighting the significance of the C-terminal SH2B of K15 as a modular element in interfering with B lymphocyte signaling through interaction with Lyn kinase.  相似文献   

9.
Increasing evidence suggests that Cyclin A-Cdk2 activity is required in the apoptosis process induced by various stimuli. To determine a specific substrate of Cyclin A-Cdk2 for apoptosis, in this study, we carried out anin vitro kinase assay using immunoprecipitated complex Cyclin A-Cdk2 as an enzyme source, and recombinant protein GST-Bad as a substrate. Our study showed that Bad was clearly phosphorylated by Cyclin A-Cdk2 in vitro. To examine whether protein Bad can also be phosphorylated by Cyclin A-Cdk2 kinase in vivo, we transiently overexpressed protein Bad with Cyclin A or Cdk2-dn, a dominant negative version of Cdk2, in Hela cells and determined the phosphorylation status of protein Bad. The test showed that protein Bad was clearly phosphorylated in Cyclin A overexpressed cells,but not in Cdk2-dn or mock transfectent. Moreover, etoposide also caused the phosphorylation of endogenetic Bad. In conclusion, here we provide first time evidence that protein Bad can be a substrate of Cyclin A-Cdk2 apoptosis for in vitro and in vivo.  相似文献   

10.
Protein phosphorylation is a common regulator of enzyme activity. Chemical modification of a protein surface, including phosphorylation, could alter the function of biological electron-transfer reactions. However, the sensitivity of intermolecular electron-transfer kinetics to post-translational protein modifications has not been widely investigated. We have therefore combined experimental and computational studies to assess the potential role of phosphorylation in electron-transfer reactions. We investigated the steroid hydroxylating system from bovine adrenal glands, which consists of adrenodoxin (Adx), adrenodoxin reductase (AdR), and a cytochrome P450, CYP11A1. We focused on the phosphorylation of Adx at Thr-71, since this residue is located in the acidic interaction domain of Adx, and a recent study has demonstrated that this residue is phosphorylated by casein kinase 2 (CK2) in vitro.1 Optical biosensor experiments indicate that the presence of this phosphorylation slightly increases the binding affinity of oxidized Adx with CYP11A1ox but not AdRox. This tendency was confirmed by KA values extracted from Adx concentration-dependent stopped-flow experiments that characterize the interaction between AdRred and Adxox or between Adxred and CYP11A1ox. In addition, acceleration of the electron-transfer kinetics measured with stopped-flow is seen only for the phosphorylated Adx-CYP11A1 reaction. Biphasic reaction kinetics are observed only when Adx is phosphorylated at Thr-71, and the Brownian dynamics (BD) simulations suggest that this phosphorylation may enhance the formation of a secondary Adx-CYP11A1 binding complex that provides an additional electron-transfer pathway with enhanced coupling.  相似文献   

11.
12.
Human epidermal growth factor receptor (EGFR) plays a central role in the pathological progression and metastasis of lung cancer; the development and clinical application of therapeutic agents that target the receptor provide important insights for new lung cancer therapies. The tumor-suppressor protein MIG6 is a negative regulator of EGFR, which can bind at the activation interface of asymmetric dimer of EGFR kinase domains to disrupt dimerization and then inactivate the kinase (Zhang X. et al. Nature 2007, 450: 741–744). The protein adopts two separated segments, i.e. MIG6segment 1 and MIG6segment 2, to directly interact with EGFR. Here, computational modeling and analysis of the intermolecular interaction between EGFR kinase domain and MIG6segment 2 peptide revealed that the peptide is folded into a two-stranded β-sheet composed of β-strand 1 and β-strand 2; only the β-strand 2 can directly interact with EGFR activation loop, while leaving β-strand 1 apart from the kinase. A C-terminal island within the β-strand 2 is primarily responsible for peptide binding, which was truncated from the MIG6segment 2 and exhibited weak affinity to EGFR kinase domain. Structural and energetic analysis suggested that phosphorylation at residues Tyr394 and Tyr395 of truncated peptide can considerably improve EGFR affinity, and mutation of other residues can further optimize the peptide binding capability. Subsequently, three derivative versions of the truncated peptide, including phosphorylated and dephosphorylated peptides as well as a double-point mutant were synthesized and purified, and their affinities to the recombinant protein of human EGFR kinase domain were determined by fluorescence anisotropy titration. As expected theoretically, the dephosphorylated peptide has no observable binding to the kinase, and phosphorylation and mutation can confer low and moderate affinities to the peptide, respectively, suggesting a good consistence between the computational analysis and experimental assay.  相似文献   

13.
PDZ (PSD-95/Discs-large/ZO-1 homology) domains represent putative targets in several diseases including cancer, stroke, addiction and neuropathic pain. Here we describe the application of a simple and fast screening assay based on fluorescence polarization (FP) to identify inhibitors of the PDZ domain in PICK1 (protein interacting with C kinase 1). We screened 43,380 compounds for their ability to inhibit binding of an Oregon Green labeled C-terminal dopamine transporter peptide (OrG-DAT C13) to purified PICK1 in solution. The assay was highly reliable with excellent screening assay parameters (Z'≈0.7 and Z≈0.6). Out of ~200 compounds that reduced FP to less than 80% of the control wells, six compounds were further characterized. The apparent affinities of the compounds were determined in FP competition binding experiments and ranged from ~5.0 μM to ~193 μM. Binding to the PICK1 PDZ domain was confirmed for five of the compounds (CSC-03, CSC-04, CSC-43, FSC-231 and FSC-240) in a non-fluorescence based assay by their ability to inhibit pull-down of PICK1 by a C-terminal DAT GST fusion protein. CSC-03 displayed the highest apparent affinity (5.0 μM) in the FP assay, and was according to fluorescence resonance energy transfer (FRET) experiments capable of inhibiting the interaction between the C-terminus of the GluR2 subunit of the AMPA-type glutamate receptor and PICK1 in live cells. Additional experiments suggested that CSC-03 most likely is an irreversible inhibitor but with specificity for PICK1 since it did not bind three different PDZ domains of PSD-95. Summarized, our data suggest that FP based screening assays might be a widely applicable tool in the search for small molecule inhibitors of PDZ domain interactions.  相似文献   

14.
The NLRC4 inflammasome, a member of the nucleotide-binding and oligomerization domain-like receptor (NLR) family, amplifies inflammation by facilitating the processing of caspase-1, interleukin (IL)–1β, and IL-18. We explored whether NLRC4 knockdown alleviated inflammatory injury following intracerebral hemorrhage (ICH). Furthermore, we investigated whether NLRC4 inflammasome activation can be adjusted by the regulator of G protein signaling 2/leucine-rich repeat kinase-2 pathway. Fifty microliters of arterial blood was drawn and injected into the basal ganglion to simulate the ICH model. NLRC4 small interfering RNAs (siRNAs) were utilized to knockdown NLRC4. An LRRK2 inhibitor (GNE7915) was injected into the abdominal cavity. Short hairpin (sh) RNA lentiviruses and lentiviruses containing RGS2 were designed and applied to knockdown and promote RGS2 expression. Neurological functions, brain edema, Western blot, enzyme-linked immunosorbent, hematoxylin and eosin staining, Nissl staining, immunoprecipitation, immunofluorescence assay and Evans blue dye extravasation and autofluorescence assay were evaluated. It was shown that the NLRC4 inflammasome was activated following ICH injury. NLRC4 knockdown extenuated neuronal death, damage to the blood-brain barrier, brain edema and neurological deficiency 3 days after ICH. NLRC4 knockdown reduced myeloperoxidase (MPO) cells as well as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β and IL-18 following ICH. GNE7915 reduced pNLRC4 and NLRC4 inflammasome activation. RGS2 suppressed the interaction of LRRK2 and NLRC4 and NLRC4 inflammasome activation by regulating pLRRK2. Our study demonstrated that the NLRC4 inflammasome may aggravate the inflammatory injury induced by ICH and that RGS2/LRRK2 may relieve inflammatory injury by restraining NLRC4 inflammasome activation.Subject terms: Molecular neuroscience, Acute inflammation  相似文献   

15.
Abstract
We have continued to characterize the blue light-regulated phosphorylation of a 120 kDa pea plasma membrane protein thought to be involved in sensory transduction for phototropism (Short and Briggs, 1990, Plant Physiol. 92 , 179–185). By incubating pea stem sections in 32P-phosphate, we show that the 120 kDa protein is phosphorylated in vivo only after blue light irradiation and that the photosensitive fluence range matches that for phototropism. Blue light induces phosphorylation of the protein in vitro as well, but the fluences required to elicit the response are at least 30-fold higher. Triton solubilization of the plasma membrane vesicles does not further alter the fluence-response relationship. Very little turnover was detected over 20 min phosphorylation time courses or by pulse-chase experiments on unirradiated, blue light pulse-irradiated, or continuously irradiated membranes. Experiments with a dark period intervening between irradiation and addition of adenosine triphosphate show the light-induced change to persist for several minutes at 30°C. Agents that disrupt the normal photochemistry of flavins preferentially inhibit the light-induced enhancement of phosphorylation, suggesting a flavin chromophore. However, exogenous free flavins do not affect the sensitivity of the response. Staphylococcus aureus V-8 proteolysis of the phosphorylated protein from membranes subjected to a range of fluences before phosphorylation shows that the radiolabel on each of three peptides increases in proportion to the phosphorylation level of the undigested polypeptide. These studies may be valuable for assessing the nature of the photoreceptor and for unravelling the early sensory transduction steps in phototropism.  相似文献   

16.
17.
Three cDNA sequences encoding four SNARE (N-ethylmaleimide-sensitive fusion protein attachment protein receptors) motifs were cloned from sea perch, and the deduced peptide sequences were analyzed for structural prediction by using 14 different web servers and softwares. The “ionic layer” structure, the three dimensional extension and conformational characters of the SNARE 7S core complex by using bioinformatics approaches were compared respectively with those from mammalian X-ray crystallographic investigations. The result suggested that the formation and stabilization of fish SNARE core complex might be driven by hydrophobic association, hydrogen bond among R group of core amino acids and electrostatic attraction at molecular level. This revealed that the SNARE proteins interaction of the fish may share the same molecular mechanism with that of mammal, indicating the universality and solidity of SNARE core complex theory. This work is also an attempt to get the protein 3D structural information which appears to be similar to that obtained through X-ray crystallography, only by using computerized approaches.  相似文献   

18.
Protein phosphorylation is a crucial post-translational modification that plays an important role in the regulation of cellular signaling processes. Site-specific quantitation of phosphorylation levels can help decipher the physiological functions of phosphorylation modifications under diverse physiological statuses. However, quantitative analysis of protein phosphorylation degrees is still a challenging task due to its dynamic nature and the lack of an internal standard simultaneously available for the samples differently prepared for various phosphorylation extents. In this study, stable-isotope dimethyl labeling coupled with phosphatase dephosphorylation (DM + deP) was tried to determine the site-specific degrees of phosphorylation in proteins. Firstly, quantitation accuracy of the (DM + deP) approach was confirmed using synthetic peptides of various simulated phosphorylation degrees. Afterwards, it was applied to evaluate the phosphorylation stoichiometry of milk caseins. The phosphorylation degree of Ser130 on α-S1-casein was also validated by absolute quantification with the corresponding synthetic phosphorylated and nonphosphorylated peptides under a selected reaction monitoring (SRM) mode. Moreover, this (DM + deP) method was used to detect the phosphorylation degree change of Ser82 on the Hsp27 protein of HepG2 cells caused by tert-butyl hydroperoxide (t-BHP) treatment. The results showed that the absolute phosphorylation degree obtained from the (DM + deP) approach was comparable with the relative quantitation resulting from stable-isotope dimethyl labeling coupled with TiO2 enrichment. This study suggested that the (DM + deP) approach is promising for absolute quantification of site-specific degrees of phosphorylation in proteins, and it may provide more convincing information than the relative quantification method.  相似文献   

19.
Abstract— We have continued to characterize the blue light-regulated phosphorylation of a 120 kDa pea plasma membrane protein thought to be involved in sensory transduction for phototropism (Short and Briggs, 1990, Plant Physiol. 92 , 179–185). By incubating pea stem sections in 32P-phosphate, we show that the 120 kDa protein is phosphorylated in vivo only after blue light irradiation and that the photosensitive fluence range matches that for phototropism. Blue light induces phosphorylation of the protein in vitro as well, but the fluences required to elicit the response are at least 30-fold higher. Triton solubilization of the plasma membrane vesicles does not further alter the fluence-response relationship. Very little turnover was detected over 20 min phosphorylation time courses or by pulse-chase experiments on unirradiated, blue light pulse-irradiated, or continuously irradiated membranes. Experiments with a dark period intervening between irradiation and addition of adenosine triphosphate show the light-induced change to persist for several minutes at 30°c. Agents that disrupt the normal photochemistry of flavins preferentially inhibit the light-induced enhancement of phosphorylation, suggesting a flavin chromophore. However, exogenous free flavins do not affect the sensitivity of the response. Staphylococcus aureus V-8 proteolysis of the phosphorylated protein from membranes subjected to a range of fluences before phosphorylation shows that the radiolabel on each of three peptides increases in proportion to the phosphorylation level of the undigested polypeptide. These studies may be valuable for assessing the nature of the photoreceptor and for unravelling the early sensory transduction steps in phototropism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号