首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ni(II) complexes were prepared by the reactions of 3,5-di-tert-butylsalicylaldehyde-S-methylisothiosemicarbazone (L) with salicylaldehyde or 2-hydroxy-1-naphthaldehyde in the presence of NiCl2·6H2O. The complexes and starting material L were characterized by physic-chemical analysis and spectroscopic techniques such as 1HNMR, 13CNMR, IR and UV–VIS. Antimicrobial activity studies of L and the two complexes standards strains of bacteria (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus, Enterococcus faecalis, Streptococcus pneumoniae, Listeria monocytogenes, Escherichia coli, Salmonella typhi and Candida albicans) and 22 clinically isolated microorganisms, including multidrug resistant pathogenic microorganisms, were carried out. The free thiosemicarbazone L showed a significant inhibition of the growth all of Gram-positive bacteria tested.  相似文献   

3.
The paper discusses the structural changes of some Cu(II) and Ni(II) complexes during the heating and their influence upon the decomposition stoichiometry. The influence of the interactions inside of coordination polyhedra, bonding and stereochemical properties of the counter ions or molecules are discussed in this connection as well. The expressive influence of the plasticity or rigidity of the Cu(II) and Ni(II) coordination polyhedra, respectively, is emphasized.
Zusammenfassung Es werden wÄrmebedingte StrukturverÄnderungen einiger Cu(II) bzw. Ni(II)-Komplexe sowie deren Einflu\ auf die Stöchiometrie der Zersetzung beschrieben. In diesem Zusammenhang wird auch ebenso der Einflu\ von Wechselwirkungen innerhalb des Koordinationspolyeders sowie von Bindungs- und stereochemischen Eigenschaften der Gegenionen oder -moleküle beleuchtet. Es wird der ausdrucksvolle Einflu\ der PlastizitÄt und HÄrte von Cu(II)- und Ni(II)-Koordinationspolyedern hervorgehoben.
  相似文献   

4.
Reaction of Cu(II) nitrate with a new pyrazole-based Schiff base ligand, 5-methyl-3-formylpyrazole-N-(2′-methylphenoxy)methyleneimine (MPzOA), afforded two types of Cu(II) complexes at different reaction temperatures, [Cu(MPzOA)(NO3)]2 (1) and [Cu(3,7,11,15-tetramethylporphyrin)(H2O)](NO3)2 (2), reported together with a Ni(II) complex, [Ni(MPzOA)2(H2O)2]Br2 (3). The compounds are characterized by single crystal X-ray structure analyses along with several physico-chemical and spectral parameters. Complex 1 is authenticated as a bis(μ-pyrazolato)dicopper(II), while 2 is a porphyrinogen and 3 is a distorted octahedral complex. Structural analyses of the complexes reveal that 1 crystallized in monoclinic P21/n space group while 2 and 3 crystallized in monoclinic C2/c space group. DNA-binding studies of the complexes have shown that the complexes interact with CT-DNA. DNA-cleavage studies with plasmid DNA have shown that 1 and 2 induce extensive DNA cleavage in the presence of H2O2 as an additive, whereas there is no change in degradation of super-coiled DNA by 3 in the presence of additive. The antimicrobial studies of the complexes against Escherichia coli DH5α bacteria strain indicated that all the complexes were capable of killing E. coli with different LD50 values.  相似文献   

5.
Two kinds of nickel(II) and copper(II) beta-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated.  相似文献   

6.
The ligational behavior of 2-hydroxybenzophenone and 2-hydroxy-4-methoxybenzophenone N-substituted thiosemicarbazones towards Ni(II) and Cu(II) ions has been investigated. The isolated complexes were identified by elemental analyses, molar conductance, magnetic moment, IR, UV-vis and ESR spectral studies. The IR spectra indicated that the investigated thiosemicarbazones lost the N(2) proton or the N(2) and OH protons and act as mononegative or binegative tridentate ligands. The ligands containing methoxy group facilitate the deprotonation of OH by resonance more than the SH. Most of the Ni(II) complexes measured subnormal magnetic moments due to square-planar+tetrahedral configuration and supported by the electronic spectra. The percentage of square-planar to tetrahedral was calculated and found in agreement with the ligand splitting energy (10Dq). Also, Cu(II) complexes measured subnormal values due to the interaction between copper centers; the lower the value the higher the interaction. It was found that the substitutent has a noticeable effect on the distortion of the complex. The ESR spectra of some solid Cu(II) complexes at room temperature exhibit g(parallel)>g( perpendicular)>2.0023 confirming a square-planar structure.  相似文献   

7.
The syntheses and crystal structures of four new divalent transition metal complexes of the types [Cu2(dien)2(nic)](ClO4)3 · MeOH (nic = anion of nicotinic acid; dien = diethylenetriamine), 1; [Cu(dien)(nic)]2(nic)2, 2; [Cu(dien)(nic)]2(BF4)2 · 2MeOH, 3 and [Ni(dien)(nic)(H2O)]4(NO3)4 · 2MeOH, 4, are reported, which were prepared by the reactions of diethylenetriamine and nicotinic acid with Cu(ClO4)2 · 6H2O, Cu(OAc)2 · H2O, Cu(BF4)2 · 6H2O and Ni(NO3)2 · 6H2O in MeOH, respectively. These complexes were characterized by single-crystal X-ray diffraction method and elemental analyses. In the cation of complex 1, one nicotinate ligand bridges two Cu(II) metal centers through the pyridyl nitrogen atom and one of the carboxylate oxygen atoms. The cations of complexes 2 and 3 form the twelve-membered metallocycles, involving two Cu(II) ions that are bridged by two nicotinate ligands. The cation of complex 4 forms a tetranuclear cage with the four Ni(II) metal centers bridged by four nicotinate ligands and each Ni(II) metal center adopts the distorted octahedral geometry. Their thermal properties have been investigated by using differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA).  相似文献   

8.
Sulfacetamide complexes of Ag(I), Cu(II), and Cd(II) were synthesized and characterized by the elemental analyses and IR and 1H NMR spectra. Structural assessment revealed two modes of coordination in the sulfacetamide complexes, showing that sulfacetamide reacts as a bidentate ligand and coordinates to Ag(I) and Cd(II) through the amido and sulfonyl oxygens and to Cu(II) through the NH2 nitrogen. Molar conductance measurements in DMSO showed that both the complexes are nonelectrolytes in nature, which allowed they to be assigned the formulas [Ag(SAM-Na)(NO3)H2O)]·3H2O, [Cu(SAM-Na)2(Cl)2], and [Cd(SAM-Na)(Cl)2]·10H2O. The kinetic and thermodynamic parameters of the thermal decomposition reactions of the complexes were estimated from the TG/DTG curves by the Coats–Redfern and Horowitz–Metzeger methods. The surface morphology of sulfacetamide complexes was scanned using X-ray powder diffraction (XRD) and scanning electron microscope (SEM) analyses.  相似文献   

9.
Journal of Thermal Analysis and Calorimetry - A series of Schiff bases resulted in the [1?+?1] condensation of 8-alkyl-2-hydroxy-tricyclo[7.3.1.02.7]-tridecan-13-one with the...  相似文献   

10.
The 2-methylimidazole complexes of Co(II), Ni(II), Cu(II) and Zn(II) orotates, mer-[Co(HOr)(H2O)2(2-meim)2] (1), mer-[Ni(HOr)(H2O)2(2-meim)2] (2), [Cu(HOr)(H2O)2(2-meim)] (3) and [Zn(HOr)(H2O)2(2-meim)] (4), were synthesized and characterized by elemental analysis, spectral (UV–Vis and FT-IR) methods, thermal analysis (TG, DTG and DTA), magnetic susceptibility, antimicrobial activity studies and single crystal X-ray diffraction technique. The complexes 1 and 2 have distorted octahedral geometries with two monodentate 2-methylimidazole and one bidentate orotate and two aqua ligands. The complexes 3 and 4 have distorted square pyramidal and trigonal bipyramidal geometry, respectively, with one 2-methylimidazole, bidentate orotate and aqua ligands. The orotate coordinated to the metal(II) ions through deprotonated nitrogen atom of pyrimidine ring and oxygen atom of carboxylate group as a bidentate ligand. The antimicrobial activities of 1 and 4 were found to be more active gram (+) than gram (−) and 4 could be use for treatment Staphylococcus aureus.  相似文献   

11.
Novel complexes of type M2LCl4·nH2O (M: Ni, n = 4; M: Cu, n = 2.5 and M: Zn, n = 1.5; L: ligand resulted from 1,3-phenylenediamine, 3,6-diazaoctane-1,8-diamine, and formaldehyde one-pot condensation) were synthesized and characterized. The ligand was also isolated and characterized. The complexes features have been assigned from microanalytical, electrospray ionization tandem mass spectrometry, IR, UV–vis, 1H NMR, and EPR spectra as well as magnetic data at room temperature. Simultaneous thermogravimetric/dynamic scanning calorimetry/evolved gas analysis measurements were performed to evidence the nature of the gaseous products formed in each step. Processes as water elimination, fragmentation, and oxidative degradation of the organic ligand as well as chloride elimination were observed during the thermal decomposition. The final product of decomposition was metal(II) oxide except for copper complex where CuCl remained also in the oxide network. The complexes exhibited an improved antibacterial activity in comparison with the ligand concerning both planktonic as well as biofilm-embedded cells.  相似文献   

12.
Neutral tetradentate N2O2 type complexes of Cu(II), Ni(II), Co(II) and Zn(II) have been synthesised using the Schiff base formed by the condensation of acetylacetone andp-anisidine. Microanalysis, molar conductance, magnetic susceptibility, IR, UV-Vis,1 H NMR, CV and EPR studies have been carried out to determine the structure of the complexes. From the data, it is found that all the complexes possess square-planar geometry. The EPR spectrum of the copper complex in DMSO at 300 K and 77 K was recorded and its salient features are reported. All the title complexes were screened for antimicrobial activity by the well diffusion technique using DMSO as solvent. The minimum inhibitory concentration (MIC) values were calculated at 37°C for a period of 24 h. It has been found that all the complexes are antimicrobially active and show higher activity than the free ligand.  相似文献   

13.
Four polydentate azomehines and their mono- and binuclear Pt(II), Cu(II), and Ni(II) complexes were synthesized and characterized. The resulting complexes were characterized by FTIR, magnetic measurements, elemental analysis, conductivity measurements, and thermal analysis. Electronic spectra and magnetic susceptibility measurements sustain the proposed distorted square-planar structures for the copper complexes. The electronic spectra display the characteristic pattern of square-planar stereochemistry for the other complexes. The thermal analyses have evidenced the thermal intervals of stability and also the thermodynamic effects that accompany them. Azomethine complexes have a similar thermal behavior for the selected metal ions. The decomposition processes as water elimination, chloride anion removal as well as degradation of the organic ligands were observed.  相似文献   

14.
Four new mixed ligand complexes were prepared by the reaction of title metal dichloroacetates and 2,4'-bipyridine. The general formulae of synthesized compounds are M(2,4'-bpy)2(CCl2HCOO)2·nH2O (where M(II)=Mn, Co, Ni, Cu; 2,4'-bpy=2,4'-bipyridine, n=2 or 4). The complexes have been isolated from aqueous media and characterized by chemical analysis, molar conductance (in MeOH, DMSO and DMF), magnetic, IR and VIS spectral studies. The nature of metal(II)-ligand coordination is discussed. The thermal behaviour of obtained complexes was studied by thermal analysis and TG-MS techniques in air. IR, X-ray powder diffraction and thermoanalytical data were used for the determination of solid intermediate products of the thermal decomposition. The principal volatile products of thermal decomposition of complexes were proved by mass spectroscopy: H2O+, CO+ 2, HCl+ 2, Cl+ 2, NO+ and other. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
In this study, we synthesized the amine compound 2-(2-aminoethyliminomethyl)phenol (H(3)A) as the starting material, and then we prepared the polydentate Schiff base ligands from the reactions of the amine compound (H(3)A) with phtaldialdehyde (H(2)L), 4-methyl-2,6-di-formlyphenol (H(3)L(1)) and 4-t-butyl-2,6-di-formylphenol (H(3)L(2)) in the ethanol solution. Moreover, the complexes Cd(II), Cu(II), Co(II), Ni(II), Zn(II) and Sn(II) of the ligands H(2)L, H(3)L(1) and H(3)L(2) have been prepared. All compounds have been characterized by the analytical and spectroscopic methods. In addition, the magnetic susceptibility and molar conductance measurements have been made. The catalytic properties of the mono- and binuclear Co(II) and Cu(II) complexes have been studied on the 3,5-di-tert-butylcatechol (3,5-DTBC) and ascorbic acid (aa) as a substrate. The oxidative C-C coupling properties of the Co(II) and Cu(II) complexes have been investigated on the sterically hindered 2,6-di-tert-butylphenol (dtbp). The antimicrobial activity properties of the ligands and their mono- and binuclear complexes have been studied against the bacteria and fungi. The results have been compared to the antibacterial and fungi drugs. The TGA curves show that the decomposition takes place in three steps for all complexes. Electrochemical properties of the complexes Cu(II) and Ni(II) have been investigated for the first time in acetonitrile by cyclic voltammetry.  相似文献   

16.
Several mixed ligand complexes [M(II)(PN)(B)] [M(II) = Ni(II), Cu(II), and Zn(II)] derived from pyridoxine (PN) and imidazoles (B), namely imidazole (him), benzimidazole (bim), histamine (hist), and L-histidine (his), were synthesized. The complexes are characterized by elemental analysis, IR, UV-Vis 1H NMR, and ESR spectroscopy. In [M(II)(PN)B], the monovalent anion of PN is bidentate to M(II) (–O, –OH), him, bim monodentate (–N), hist bidentate (–N, –N), and his tridentate (–O, –N, –N). Magnetic moment studies showed that the Ni(II) complexes and Cu(II)–PN–his have octahedral configuration while the other Cu(II) complexes have distorted tetrahedral geometry. The g /A values calculated from the X-band ESR spectra of Cu(II) complexes in DMSO at 300 and 77 K supports the geometry. The thermal behavior (TG/DTA) of the synthesized complexes indicates the presence of lattice as well as coordinated water in the complexes. The in vitro biological activity of the mixed ligand complexes was tested against common bacteria, yeast, and fungi. The results in comparison with the control indicate that most of the complexes exhibit higher biological activities. The oxidative DNA cleavage studies of the mixed ligand complexes were performed using gel electrophoresis.  相似文献   

17.
Four novel Schiff bases PNL-4OMe, PNL-4Br, PNL-4F, PNL-3,4-F2, and their copper(II) complex with [M(L)2(H2O)2] arrangement was synthesized using Paeonol and various aromatic substituted amines. Characterization has been done through FT-IR, ESI Mass, TG-DTA, DFT, magnetic measurements, elemental analysis, and Thermogravimetric analysis. Paeonol derived new bond formation in Schiff bases and changes in frequencies during complexation have been confirmed through FT-IR spectra. All complexes are thermally stable, paramagnetic, and have non-electrolytic behavior. The antimicrobial activity was also tested against Gram-positive bacteria; S. aureus, B. subtilis, and Gram-negative bacteria; E. coli, P. aeruginosa. Single-crystal X-ray data provide evidence that PNL-3,4-F2 is recrystallizing in a triclinic system with P-1(2) space group and confirms the intramolecular H-bonding and short Vander Waal type interactions. Non-covalent interactions and π … π stacking surface interactions in PNL-3,4-F2 were studied with Hirshfeld analysis. H-atoms have the highest interactions with other atoms of neighbouring molecules compared to all other atoms. DFT calculations were performed on the electronic structure of ligand PNL-3,4-F2 and its copper(II) complex and discussed.  相似文献   

18.
We describe the synthesis and characterization of two novel azo ligands, 4,5-dihydroxy-3,6-bis(2-hydroxyphenylazo)-2,7 naphthalene disulfonic acid (H2L) and 4,5-dihydroxy-3,6-bis(2-hydroxy-4-sulfophenylazo)-2,7-naphthalenedisulfonic acid (H2L1). The Cu(II), Ni(II), and Co(II) complexes of these ligands were prepared and characterized by infrared, UV–Vis, 1H- and 13C-NMR spectra, atomic absorption spectroscopy, mass spectrometry, elemental analyses, thermogravimetric analysis, conductivity, cyclic voltammetry, and magnetic measurements. The results suggest that the complexes have a 2:1 (metal:ligand) molar ratio, involving binuclear azo ligands with an ONO donor set. Metal ion uptake studies were conducted with a batch technique. Preliminary histological studies were also made. The results indicate that the azo ligands have high thermal stability, good metal extraction capacity, and favorable dying properties with certain tissues.  相似文献   

19.
Square planar complexes of the type Ni(L(1))(2), Ni(L(2))(2), Cu(L(1))(2), and Cu(L(2))(2), where L(1)H = 2-hydroxy-5-t-octylacetophenone oxime and L(2)H = 2-hydroxy-5-n-propylacetophenone oxime, have been prepared and characterized by single-crystal X-ray diffraction, cyclic voltammetry, UV/vis spectroscopy, field-effect-transistor measurements, density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, and, in the case of the paramagnetic species, electron paramagnetic resonance (EPR) and magnetic susceptibility. Variation of alkyl groups on the ligand from t-octyl to n-propyl enabled electronic isolation of the complexes in the crystal structures of M(L(1))(2) contrasting with π-stacking interactions for M(L(2))(2) (M = Ni, Cu). This was evidenced by a one-dimensional antiferromagnetic chain for Cu(L(2))(2) but ideal paramagnetic behavior for Cu(L(1))(2) down to 1.8 K. Despite isostructural single crystal structures for M(L(2))(2), thin-film X-ray diffraction and scanning electron microscopy (SEM) revealed different morphologies depending on the metal and the deposition method (vapor or solution). The Cu complexes displayed limited electronic interaction between the central metal and the delocalized ligands, with more mixing in the case of Ni(II), as shown by electrochemistry and UV/vis spectroscopy. The complexes M(L(2))(2) showed poor charge transport in a field-effect transistor (FET) device despite the ability to form π-stacking structures, and this provides design insights for metal complexes to be used in conductive thin-film devices.  相似文献   

20.
The monomer 3‐allyl‐5‐(phenylazo)‐2‐thioxothiazolidine‐4‐one (HL) was prepared by the reaction of allyl rhodanine with aniline through diazo‐coupling reaction. Reaction of HL with Ni(II) or Co(II) salts gave polymer complexes ( 1 – 8 ) with general stoichiometries [M(HL)(Cl)2(OH2)2]n, [M(HL)(O2SO2)(OH2)2]n, [M(L)(O2NO)(H2O)2]n and [M(L)(O2CCH3)(H2O)2]n (where M = Ni(II) or Co(II)). The structures of the polymer complexes were identified using elemental analysis, infrared and electronic spectra, molar conductance, magnetic susceptibility, X‐ray diffraction and thermogravimetric analysis. The interaction between the polymer complexes and calf thymus DNA showed a hypochromism effect. HL and its polymer complexes were tested against bacterial and fungal species. Co(II) polymer complex 2 is the most effective against Klebsiella pneumoniae and is more active than penicillin. The results showed that Ni(II) polymer complex 5 is a good antibacterial agent against Staphylococcus aureus and Pseudomonas aeruginosa. Molecular docking was used to predict the binding between the monomer with the receptors of prostate cancer (PDB code: 2Q7L Hormone) and breast cancer (PDB code: 1JNX Gene regulation). Coats–Redfern and Horowitz–Metzger methods were applied for calculating the thermodynamic parameters of HL and its polymer complexes. The thermal activation energy of decomposition for HL is higher than that for the polymer complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号