首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is devoted to various significant polyatomic and doubly charged interferences observed for trace elements determined by inductively coupled plasma mass spectrometry in geological samples. It has been shown that most interferences can be minimized or completely excluded using an ELEMENT 2 high-resolution mass spectrometer. The influence of spectral interferences has been quantitatively estimated. Recommendations are given for the selection of isotopes with minimal spectral interferences and an optimal resolution mode. The detection limits for analytes are evaluated for three resolution modes: 300, 4000 and 10000 together with the interferences related to the errors of rare-earth element determination.  相似文献   

2.
The analysis of volatile organic compounds (VOCs) in whole human blood at the low parts-per-trillion level has until recently required the use of a high-resolution mass spectrometer to obtain the specificity and detection limits required for epidemiological studies of VOC exposure in the general public. Because of the expense and expertise required to operate and maintain a high-resolution instrument, the applicability of this method has been limited. These limitations are overcome in a new method using automated headspace solid-phase microextraction (SPME) in conjunction with a gas chromatograph and a benchtop quadrupole mass spectrometer. A combination of SPME and multiple single-ion monitoring minimizes the interferences and chemical noise associated with whole blood samples. This method permits the analysis of 10 VOCs in human blood while simplifying the sample preparation and reducing the possible exposure of the analyst to blood aerosols. Twelve samples can be run successively in a fully automated mode, thus eliminating the need for operator attention. Detection limits are below 50 ppt (pg/mL) for a majority of the VOCs tested with a 5-mL sample.  相似文献   

3.
A simple and rapid approach to obtaining target plates for the investigation of low-molecularweight compounds by surface-assisted laser desorption/ionization (SALDI) mass spectrometry is proposed. It consists in the vacuum sputtering of a carbon layer with a thickness of about 50 nm onto a metal surface. The resulting coatings are characterized by homogeneity, hydrophobicity, and high mechanical strength, which eliminates a possibility of mass spectrometer contamination. A comparison of the SALDI mass spectra of test compounds recorded using conventional carbon materials and carbon nanocoatings demonstrates advantages of the last named materials, such as high spectral resolution and the absence of spectral interferences at low m/z values.  相似文献   

4.
We successfully detected halogenated compounds from several kinds of environmental samples by using a comprehensive two-dimensional gas chromatograph coupled with a tandem mass spectrometer (GC×GC-MS/MS). For the global detection of organohalogens, fly ash sample extracts were directly measured without any cleanup process. The global and selective detection of halogenated compounds was achieved by neutral loss scans of chlorine, bromine and/or fluorine using an MS/MS. It was also possible to search for and identify compounds using two-dimensional mass chromatograms and mass profiles obtained from measurements of the same sample with a GC×GC-high resolution time-of-flight mass spectrometer (HRTofMS) under the same conditions as those used for the GC×GC-MS/MS. In this study, novel software tools were also developed to help find target (halogenated) compounds in the data provided by a GC×GC-HRTofMS. As a result, many dioxin and polychlorinated biphenyl congeners and many other halogenated compounds were found in fly ash extract and sediment samples. By extracting the desired information, which concerned organohalogens in this study, from huge quantities of data with the GC×GC-HRTofMS, we reveal the possibility of realizing the total global detection of compounds with one GC measurement of a sample without any pre-treatment.  相似文献   

5.
Liquid chromatography coupled to orthogonal acceleration time-of-flight mass spectrometry (LC/TOF) provides an attractive alternative to liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS) in the field of multiresidue analysis. The sensitivity and selectivity of LC/TOF approach those of LC/MS/MS. TOF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of commercial TOF instruments ranging from 10 000 to 18 000 full width at half maximum (FWHM) is not, however, sufficient to completely exclude the problem of isobaric interferences (co-elution of analyte ions with matrix compounds of very similar mass). Due to the required data storage capacity, TOF raw data is commonly centroided before being electronically stored. However, centroiding can lead to a loss of data quality. The co-elution of a low intensity analyte peak with an isobaric, high intensity matrix compound can cause problems. Some centroiding algorithms might not be capable of deconvoluting such partially merged signals, leading to incorrect centroids.Co-elution of isobaric compounds has been deliberately simulated by injecting diluted binary mixtures of isobaric model substances at various relative intensities. Depending on the mass differences between the two isobaric compounds and the resolution provided by the TOF instrument, significant deviations in exact mass measurements and signal intensities were observed. The extraction of a reconstructed ion chromatogram based on very narrow mass windows can even result in the complete loss of the analyte signal. Guidelines have been proposed to avoid such problems. The use of sub-2 microm HPLC packing materials is recommended to improve chromatographic resolution and to reduce the risk of co-elution. The width of the extraction mass windows for reconstructed ion chromatograms should be defined according to the resolution of the TOF instrument. Alternative approaches include the spiking of the sample with appropriate analyte concentrations. Furthermore, enhanced software, capable of deconvoluting partially merged mass peaks, may become available.  相似文献   

6.
建立吹扫捕集–气相色谱–质谱联用法测定环境水中101种常见挥发性有机物(VOCs)的方法。通过加热吹扫,样品水中的VOCs富集于捕集管中,以DB–624(60 m×0.25 mm,1.4μm)色谱柱分离,内标法定量。结果表明,101种挥发性有机物(VOCs)色谱分离效果良好,质量浓度在0.5~50 ng/mL范围内与色谱峰面积均呈线性关系,高沸点VOCs线性范围较窄。方法定量限(10 S/N)为0.11~0.77 ng/mL,均低于GB 3838–2002《地表水环境质量标准》、GB 5749–2006《生活饮用水卫生标准》及国外相关标准的限值。平均加标回收率在70.3%~123.6%之间,测定结果的相对标准偏差不大于8.8%(n=6)。该方法快速、简便,适用于环境水中挥发性有机化合物的分析检测。  相似文献   

7.
Liquid chromatography-mass spectrometry (LC-MS) has been widely used in doping control laboratories over the last two decades. Currently, simple quadrupole, triple quadrupole and ion trap are the most commonly employed analyzers in toxicological analysis. Nevertheless, the main lack of these technologies is the restricted number of target compounds simultaneously screened without loss of sensitivity. In this article we present an innovative screening approach routinely applied in the French horse doping control laboratory based on high resolution (50000) and high mass accuracy (<5 ppm) in full scan MS mode for more than 235 target analytes screened from an initial volume of 5 mL of urine. The sample preparation was classically founded on solid phase extraction by means of reverse phase C18 cartridges. LC-MS analyses were carried out on a Shimadzu binary HPLC pumps linked to a C18 Sunfire column associated with the high resolution exactive benchtop orbitrap mass spectrometer. This screening was performed alternatively in positive-negative ionization mode during the same run. Thus, the identification of compounds of interest was made using their exact mass in positive-negative ionization mode at their expected retention time. All data obtained were processed by ToxID software (ThermoFisherScientific) which is able to identify a molecule by theoretical mass and retention time. In order to illustrate this innovative technology applied in our laboratory, sample preparation, validation data performed on 20 target compounds from 16 different horse urine samples, chromatograms and spectra will be discussed in this paper.  相似文献   

8.
Triple quadrupole mass spectrometers, when operated in multiple reaction monitoring (MRM) mode, offer a unique combination of sensitivity, specificity, and dynamic range. Consequently, the triple quadrupole is the workhorse for high-throughput quantitation within the pharmaceutical industry. However, in the past, the unit mass resolution of quadrupole instruments has been a limitation when interference from matrix or metabolites cannot be eliminated. With recent advances in instrument design, triple quadrupole instruments now afford mass resolution of less than 0.1 Dalton (Da) full width at half maximum (FWHM). This paper describes the evaluation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput bioanalysis with emphasis on comparison of selectivity, sensitivity, dynamic range, precision, accuracy, and stability under both unit mass (1 Da FWHM) and enhanced (相似文献   

9.
Secondary-ion mass spectrometry (SIMS) is used to sputter ions directly from thin-layr chromatograms in which components in a mixture have been separated. Mixtures of phenothiazine drugs and small peptides have been separated an detected by the chromatography/SIMS method. Phosphonium salts have been separated by thin-layer chromatography and imaged in situ by mass spectrometer. Organometallic compounds such as the transition metral acetylacetonates have been simialry determined. Mixtures that have been separated by gel electrophoresis are transferred by using a standard blotting procedure to a nitrocellulose support, which is then examined by secondary-ion mass spectrometry. A mixture of organic dyes was separated by gel electrophoresis, and characterized by secondary-ion mass spectrometry. The use of the mass spectral information to deconvolute overlapping components on the chromatogram is discussed, and the ultimate spatial resolution for molecular mapping is estimated as about 1 μm.  相似文献   

10.
A gas chromatography with ion trap mass spectrometry method has been developed and validated for the analysis of 27 polar organic compounds in atmospheric aerosols. The target analytes were low‐molecular‐weight carboxylic acids and methoxyphenols, as relevant markers of source emissions and photochemical processes of organic aerosols. The operative parameters were optimized in order to achieve the best sensitivity and selectivity for the analysis. In comparison with the previous gas chromatography with mass spectrometry procedure based on single ion monitoring detection, the tandem mass spectrometry technique increased the analytical sensitivity by reducing detection limits for standard solutions from 1–2.6 to 0.1–0.4 ng/μL ranges (concentrations in the injected solution). In addition, it enhanced selectivity by reducing matrix interferences and chemical noise in the chromatogram. The applicability of the developed method in air quality monitoring campaigns was effectively checked by analyzing environmental samples collected in the Po Valley (Northern Italy) in different seasons. The obtained results indicate that the ion trap mass spectrometer may be an ideal alternative to high‐resolution mass spectrometers for the user‐friendly and cost‐effective determination of a wide range of molecular tracers in airborne particulate matter.  相似文献   

11.
Although liquid chromatography with mass spectrometry in full scan mode can obtain all the signals simultaneously in a large range and low cost, it is rarely used in quantitative analysis due to several problems such as chromatographic drifts and peak overlap. In this paper, we propose a Tchebichef moment method for the simultaneous quantitative analysis of three active compounds in Qingrejiedu oral liquid based on three‐dimensional spectra in full scan mode of liquid chromatography with mass spectrometry. After the Tchebichef moments were calculated directly from the spectra, the quantitative linear models for three active compounds were established by stepwise regression. All the correlation coefficients were more than 0.9978. The limits of detection and limits of quantitation were less than 0.11 and 0.49 μg/mL, respectively. The intra‐ and interday precisions were less than 6.54 and 9.47%, while the recovery ranged from 102.56 to 112.15%. Owing to the advantages of multi‐resolution and inherent invariance properties, Tchebichef moments could provide favorable results even in the situation of peaks shifting and overlapping, unknown interferences and noise signals, so it could be applied to the analysis of three‐dimensional spectra in full scan mode of liquid chromatography with mass spectrometry.  相似文献   

12.
The analysis of peptides presents serious challenges for bioanalytical scientists including low total ion current and non‐selective fragmentation during tandem mass spectrometry (MS/MS). During method validation of a peptide in rat serum matrix some interferences could not be easily removed and thus prevented accurate and precise measurement. These problems associated with peptide quantitation were resolved by using FAIMS (high‐Field Asymmetric waveform Ion Mobility Spectrometry). This selectivity‐enhancing technique filters out matrix interferences, and the resulting pseudo‐selected reaction monitoring (pseudo‐SRM) chromatograms were nearly free from interferences. Control blank matrix samples contained an acceptable level of interference (only 7% signal as compared to the lower level of quantitation). Chromatographic peaks were easily, accurately and precisely integrated resulting in a validated liquid chromatography (LC)/FAIMS‐MS/MS method for the analysis of a peptide drug in rat serum according to United States Food and Drug Administration (US FDA) bioanalytical guidelines. These results confirm that new selectivity‐enhancing technologies aid the pharmaceutical industry in reliably producing acceptable pharmacokinetic data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Quantitation of chromatographically coeluting compounds with partially overlapping mass profiles is a challenging task, especially if only a low-resolution mass spectrometer is available. To examine whether theoretical predictions can be utilized to determine the appropriate concentration ranges of the coeluting compounds that satisfy the non-interfering condition, we utilized an algorithm based upon a two-component model to compare the experimentally measured and predicted quantitation errors. Selected unlabeled and 13C-labeled polychlorinated biphenyl (PCB) congeners were investigated as model compounds. Standard solutions containing various concentration ratios of the unlabeled and 13C-labeled PCB congeners were analyzed, and the data were used to compare with theoretical predictions derived from the chlorine isotopic distributions (35Cl and 37Cl). Good agreements between experimental predictions and theoretical predictions were found on the magnitude of interferences for quantitation of 13C-labeled PCB congeners, as well as on the variability of the quantitation errors with the concentration ratio of 13C-labeled and unlabeled PCB counterparts. In addition, the magnitude of interferences considered in the present study was highly dependent upon the number of coexisting ions included for quantitation and their relative abundances in the mass spectrum. All these results suggest that the magnitude of interferences in quantifying a pair of coeluting compounds with partially overlapping mass spectral profiles can be effectively determined and minimized by carefully selecting the concentration ratio of the coeluting compounds and/or the number of quantitation ions. Finally, the selection of the experimental parameters to satisfy the non-interfering condition can be made purely on the basis of theoretical considerations.  相似文献   

14.
The determination of acceptable mass error tolerances for high‐resolution mass spectrometry based signals has been evaluated in a comprehensive way. This was achieved by using a technical approach which is based on the post‐column infusion of an analyte containing solution. This well‐known experimental setup was not used to spot signal suppression regions of a particular analyte, but to spot regions of the chromatogram where a systematic mass drift of the analyte ion can be observed (isobaric interference plot). Not the changing signal intensity but the stability of the measured analyte mass was observed. A wide range of different analytes in combinations with potentially interfering matrices has been evaluated. Furthermore, different mass resolving power settings were evaluated. Isobaric interferences between matrix compounds and analytes were common at mass resolving powers <50 000 full width at half maximum. The proposed post‐column infusion technique is a useful tool for the determination of the assay and matrix‐specific mass error tolerances. It aims to ensure the highest possible selectivity, at the same time preventing the encounter of detrimental mass error related peak deformations as well as false negative findings. Unlike conventional matrix spiking approaches, isobaric interference plots provide information of potential interferences across the whole chromatographic time range. This becomes relevant when there is a relative retention time shift between the analyte and potential interfering matrix compounds. Furthermore, the described setup can be used to study how the mass accuracy of any mass spectrometer is affected by a widely varying total ion current. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Acceleration of liquid chromatography/mass spectrometric (LC/MS) analysis for metabolite identification critically relies on effective data processing since the rate of data acquisition is much faster than the rate of data mining. The rapid and accurate identification of metabolite peaks from complex LC/MS data is a key component to speeding up the process. Current approaches routinely use selected ion chromatograms that can suffer severely from matrix effects. This paper describes a new method to automatically extract and filter metabolite-related information from LC/MS data obtained at unit mass resolution in the presence of complex biological matrices. This approach is illustrated by LC/MS analysis of the metabolites of verapamil from a rat microsome incubation spiked with biological matrix (bile). MS data were acquired in profile mode on a unit mass resolution triple-quadrupole instrument, externally calibrated using a unique procedure that corrects for both mass axis and mass spectral peak shape to facilitate metabolite identification with high mass accuracy. Through the double-filtering effects of accurate mass and isotope profile, conventional extracted ion chromatograms corresponding to the parent drug (verapamil at m/z 455), demethylated verapamil (m/z 441), and dealkylated verapamil (m/z 291), that contained substantial false-positive peaks, were simplified into chromatograms that are substantially free from matrix interferences. These filtered chromatograms approach what would have been obtained by using a radioactivity detector to detect radio-labeled metabolites of interest.  相似文献   

16.
In this work the application of high-speed narrow-bore capillary GC in combination with a fast scanning double focusing magnetic sector mass spectrometer is evaluated. Special emphasis is placed upon detection limits and scan speed in the full scan mode and in the selected ion monitoring mode (SIM). In the full scan mode, up to 20 scans per second could be obtained. The detection limits are in the low picogram range in the full scan mode and improve even to 5 to 50 fg in the SIM mode, depending on the sample complexity and mass resolving power. It will be illustrated that by increasing the resolution in the SIM mode, interferences from ions of the same nominal mass-to-charge ratio as the ions of interest are significantly reduced. Chemical background noise can therefore be largely eliminated, thus enhancing the signal-to-noise ratio.  相似文献   

17.
There is a growing interest in exploring the use of liquid chromatography coupled with full-scan high resolution accurate mass spectrometry (LC/HRMS) in bioanalytical laboratories as an alternative to the current practice of using LC coupled with tandem mass spectrometry (LC/MS/MS). Therefore, we have investigated the theoretical and practical aspects of LC/HRMS as it relates to the quantitation of drugs in plasma, which is the most commonly used matrix in pharmacokinetics studies. In order to assess the overall selectivity of HRMS, we evaluated the potential interferences from endogenous plasma components by analyzing acetonitrile-precipitated blank human plasma extract using an LC/HRMS system under chromatographic conditions typically used for LC/MS/MS bioanalysis with the acquisition of total ion chromatograms (TICs) using 10 k and 20 k resolving power in both profile and centroid modes. From each TIC, we generated extracted ion chromatograms (EICs) of the exact masses of the [M + H](+) ions of 153 model drugs using different mass extraction windows (MEWs) and determined the number of plasma endogenous peaks detected in each EIC. Fewer endogenous peaks are detected using higher resolving power, narrower MEW, and centroid mode. A 20 k resolving power can be considered adequate for the selective determination of drugs in plasma. To achieve desired analyte EIC selectivity and simultaneously avoid missing data points in the analyte EIC peak, the MEW used should not be too wide or too narrow and should be a small fraction of the full width at half maximum (FWHM) of the profile mass peak. It is recommended that the optimum MEW be established during method development under the specified chromatographic and sample preparation conditions. In general, the optimum MEW, typically ≤ ±20 ppm for 20 k resolving power, is smaller for the profile mode when compared with the centroid mode.  相似文献   

18.
A new method based on ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry ((Q-ToF)-MS) was developed for the analysis of 32 biologically active compounds including anti-inflammatories, analgesics, lipid regulators, psychiatric drugs, anti-ulcer agents, antibiotics, beta-blockers and phytoestrogens. This new method allows chromatographic analysis in 14 min, with instrumental detection limits from 2 to 84 pg, and limits of quantification ranging from 0.1 to 15 ng/L in tap water, and from 2 to 300 ng/L in wastewater. The potential of liquid chromatography with triple quadrupole mass spectrometry (LC/QqQ-MS) was compared with that of UPLC/(Q-ToF)-MS for the analysis of biologically active compounds in water samples. LC/Q-ToF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of ToF instruments diminishes the problem of isobaric interferences and helps the analysis of trace compounds in complex samples. In this work UPLC/Q-ToF chromatograms were recorded containing full scan spectral data. The m/z values of analytes were extracted from the total ion chromatogram (TIC) and the accurate masses of the compounds were obtained. In addition, to increase the selectivity of ToF measurements a narrow accurate mass interval (20 m m/z units mass window) was used to reconstruct the chromatographic traces. However, regarding quantitative performance in terms of dynamic range and limits of detection (LODs), typical LODs achieved by QqQ instruments operating in multiple-reaction monitoring (MRM) mode ranged from 1 to 50 ng/L in wastewater, and the linear response for QqQ instruments generally covers three orders of magnitude. This is an important advantage over ToF instruments and one of the reasons why QqQ instruments are widely used in quantitative environmental analysis.  相似文献   

19.
The quantitative capabilities of a linear ion trap high‐resolution mass spectrometer (LTQ‐Orbitrap™) were investigated using full scan mode bracketing the m/z range of the ions of interest and utilizing a mass resolution (mass/FWHM) of 15000. Extracted ion chromatograms using a mass window of ±5–10 mmu centering on the theoretical m/z of each analyte were generated and used for quantitation. The quantitative performance of the LTQ‐Orbitrap™ was compared with that of a triple quadrupole (API 4000) operating using selected reaction monitoring (SRM) detection. Comparable assay precision, accuracy, linearity and sensitivity were observed for both approaches. The concentrations of actual study samples from 15 Merck drug candidates reported by the two methods were statistically equivalent. Unlike SRM being a tandem mass spectrometric (MS/MS)‐based detection method, a high resolution mass spectrometer operated in full scan does not need MS/MS optimization. This approach not only provides quantitative results for compounds of interest, but also will afford data on other analytes present in the sample. An example of the identification of a major circulating metabolite for a preclinical development study is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Sudden sampling introduction into a membrane inlet mass spectrometer (MIMS) considerably improves the selectivity of the membrane inlet and is therefore applicable even for compounds with low permeabilities through a silicone membrane. In this study the basics of cyclic non-steady-state sudden increase sample injection were studied using a three-membrane inlet and a portable sector double-focusing mass spectrometer. The operational parameters of the inlet system providing the most efficient enrichment of volatile organic compounds (VOCs) in air were defined. Simulation of the diffusion process following sudden sample introduction into the three-membrane inlet was also carried out. Experimental testing of the three-membrane inlet system with the cyclic sudden sample injection mode for benzene, toluene, styrene, and xylene in air was performed. The simulation and the experimental results demonstrated that, when this mode is used, the VOCs/nitrogen relative enrichment factor of samples introduced into the mass spectrometer equipped with a three-membrane inlet is increased by a factor of approximately 10(5) compared with a direct introduction method. This effect may be used to decrease detection limits of compounds obtained with mass spectrometry to decrease matrix flow through the inlet at the same detection limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号