首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
By a uniform and simple Weyl invariant coupling of scale and matter fields, we construct theories that unify massless, massive, and partially massless excitations. Masses are related to tractor Weyl weights, and Breitenlohner–Freedman stability bounds in anti de Sitter amount to reality of these weights. The method relies on tractor calculus – mathematical machinery allowing Weyl invariance to be kept manifest at all stages. The equivalence between tractor and higher spin systems with arbitrary spins and masses is also considered.  相似文献   

2.
Using ambient space we develop a fully gauge and o(d,2)o(d,2)-covariant approach to boundary values of AdSd+1AdSd+1 gauge fields. It is applied to the study of (partially) massless fields in the bulk and (higher-order) conformal scalars, i.e. singletons, as well as (higher-depth) conformal gauge fields on the boundary. In particular, we identify the corresponding generalized Fradkin–Tseytlin equations as obstructions to the extension of the off-shell boundary value to the bulk, generalizing the usual considerations for the holographic anomalies to the partially massless fields. We also relate the background fields for the higher-order singleton to the boundary values of partially massless fields and prove the appropriate generalization of the Flato–Fronsdal theorem, which is in agreement with the known structure of symmetries for the higher-order wave operator. All these facts support the following generalization of the higher-spin holographic duality: the O(N)O(N) model at a multicritical isotropic Lifshitz point should be dual to the theory of partially massless symmetric tensor fields described by the Vasiliev equations based on the higher-order singleton symmetry algebra.  相似文献   

3.
4.
We propose a systematic procedure for extracting gauge invariant and gauge fixed actions for various higher-spin gauge field theories from covariant bosonic open string field theory. By identifying minimal gauge invariant part for the original free string field theory action, we explicitly construct a class of covariantly gauge fixed actions with BRST and anti-BRST invariance. By expanding the actions with respect to the level N   of string states, the actions for various massive fields including higher-spin fields are systematically obtained. As illustrating examples, we explicitly investigate the level N?3N?3 part and obtain the consistent actions for massive graviton field, massive 3rd rank symmetric tensor field, or anti-symmetric field. We also investigate the tensionless limit of the actions and explicitly derive the gauge invariant and gauge fixed actions for general rank n symmetric and anti-symmetric tensor fields.  相似文献   

5.
We formulate four-dimensional higher spin gauge theories in spacetimes with signature (4−p,p)(4p,p) and non-vanishing cosmological constant. Among them are chiral models in Euclidean (4,0)(4,0) and Kleinian (2,2)(2,2) signature involving half-flat gauge fields. Apart from the maximally symmetric solutions, including de Sitter spacetime, we find: (a) SO(4−p,p)SO(4p,p) invariant deformations, depending on one continuous and infinitely many discrete parameters, including a degenerate metric of rank one; (b) non-maximally symmetric solutions with vanishing Weyl tensors and higher spin gauge fields, that differ from the maximally symmetric solutions in the auxiliary field sector; and (c) solutions of the chiral models furnishing higher spin generalizations of type D gravitational instantons, with an infinite tower of Weyl tensors proportional to totally symmetric products of two principal spinors. These are apparently the first exact 4D solutions with non-vanishing massless higher spin fields.  相似文献   

6.
7.
8.
9.
《Nuclear Physics B》2001,607(3):577-604
Massive spin s⩾3/2 fields can become partially massless in cosmological backgrounds. In the plane spanned by m2 and Λ, there are lines where new gauge invariances permit intermediate sets of higher helicities, rather than the usual flat space extremes of all 2s+1 massive or just 2 massless helicities. These gauge lines divide the (m2,Λ) plane into unitarily allowed or forbidden intermediate regions where all 2s+1 massive helicities propagate but lower helicity states can have negative norms. We derive these consequences for s=3/2,2 by studying both their canonical (anti)commutators and the transmutation of massive constraints to partially massless Bianchi identities. For s=2, a Hamiltonian analysis exhibits the absence of zero helicity modes in the partially massless sector. For s=5/2,3 we derive Bianchi identities and their accompanying gauge invariances for the various partially massless theories with propagating helicities (±5/2,±3/2) and (±3,±2), (±3,±2,±1), respectively. Of these, only the s=3 models are unitary. To these ends, we also provide the half integer generalization of the integer spin wave operators of Lichnerowicz. Partial masslessness applies to all higher spins in (A)dS as seen by their degree of freedom counts. Finally a derivation of massive d=4 constraints by dimensional reduction from their d=5 massless Bianchi identity ancestors is given.  相似文献   

10.
Unfolded equations of motion for symmetric massive bosonic fields of any spin in Minkowski and (A)dS(A)dS spaces are presented. Manifestly gauge invariant action for a spin s?2s?2 massive field in any dimension is constructed in terms of gauge invariant curvatures.  相似文献   

11.
We present a family of nonrelativistic Yang–Mills gauge theories in D+1D+1 dimensions whose free-field limit exhibits quantum critical behavior with gapless excitations and dynamical critical exponent z=2z=2. The ground state wavefunction is intimately related to the partition function of relativistic Yang–Mills in D   dimensions. The gauge couplings exhibit logarithmic scaling and asymptotic freedom in the upper critical spacetime dimension, equal to 4+14+1. The theories can be deformed in the infrared by a relevant operator that restores Poincaré invariance as an accidental symmetry. In the large-N limit, our nonrelativistic gauge theories can be expected to have weakly curved gravity duals.  相似文献   

12.
We report new results on nearly conformal gauge theories with fermions in the fundamental representation of the SU(3)SU(3) color gauge group as the number of fermion flavors is varied in the Nf=4–16Nf=416 range. To unambiguously identify the chirally broken phase below the conformal window we apply a comprehensive lattice tool set in finite volumes which includes the test of Goldstone pion dynamics, the spectrum of the fermion Dirac operator, and eigenvalue distributions of random matrix theory. We also discuss the theory inside the conformal window and present our first results on the running of the renormalized gauge coupling and the renormalization group beta function. The importance of understanding finite volume zero momentum gauge field dynamics inside the conformal window is illustrated. Staggered lattice fermions are used throughout the calculations.  相似文献   

13.
The strong coupling limit of Einstein gravity in d+1d+1 dimensions gives rise to a quantum theory where after factorization of the conformal factor mode SL(d,R)/SO(d)SL(d,R)/SO(d) nonlinear sigma-models are spatially coupled by the diffeomorphism constraint. A functional integral representation for the theory?s propagation kernel is derived in completions of the proper time gauge which manifestly invokes only physical gauge invariant degrees of freedom. In the weak field limit it reduces to the propagation kernel of massless and transversal-traceless free fields. For strong fields a covariant normal coordinate expansion is developed which covers the configuration manifold globally. Its leading order approximant resembles a semiclassical propagation kernel but without the need to solve the classical constraints. The results have implications for the ground state structure of quantum gravity.  相似文献   

14.
15.
In this paper we provide a complete list of spin-2 cubic interaction vertices with two derivatives. We work in (anti) de Sitter space with dimension d?4d?4 and arbitrary value of cosmological constante and use simple metric formalism without any auxiliary or Stueckelberg fields. We separately consider cases with one, two and three different spin-2 fields entering the vertex where each field may be massive, massless or partially massless one. The connection of our results with massive (bi)gravity theories is also briefly discussed.  相似文献   

16.
17.
We provide an elementary systematic discussion of single-trace matrix actions and of the group of matrix reparameterization that acts on them. The action of this group yields a generalized notion of gauge invariance which encompasses ordinary diffeomorphism and gauge invariances. We apply the formalism to non-abelian D-brane actions in arbitrary supergravity backgrounds, providing in particular explicit checks of the consistency of Myers? formulas with supergravity gauge invariances. We also draw interesting consequences for emergent space models based on the study of matrix effective actions. For example, in the case of the AdS5×S5AdS5×S5 background, we explain how the standard tensor transformation laws of the supergravity fields under ordinary diffeomorphisms emerge from the D-instanton effective action in this background.  相似文献   

18.
19.
20.
We show that in the massless N=1N=1 supersymmetric Wess–Zumino theory it is possible to devise a computational strategy by which the x-space calculation of the ladder 4-point correlators can be carried out without introducing any regularization. As an application we derive a representation valid at all loop orders in terms of conformal invariant integrals. We obtain an explicit expression of the 3-loop ladder diagram for collinear external points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号