首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent attempts to recover the graviton propagator from spin foam models involve the use of a boundary quantum state peaked on a classical geometry. The question arises whether beyond the case of a single simplex this suffices for peaking the interior geometry in a semiclassical configuration. In this paper we explore this issue in the context of quantum Regge calculus with a general triangulation. Via a stationary phase approximation, we show that the boundary state succeeds in peaking the interior in the appropriate configuration, and that boundary correlations can be computed order by order in an asymptotic expansion. Further, we show that if we replace at each simplex the exponential of the Regge action by its cosine—as expected from the semiclassical limit of spin foam models—then the contribution from the sign-reversed terms is suppressed in the semiclassical regime and the results match those of conventional Regge calculus.  相似文献   

2.
3.
Since there are quantization ambiguities in constructing the Hamiltonian constraint operator in isotropic loop quantum cosmology, it is crucial to check whether the key features of loop quantum cosmology are robust against the ambiguities. In this Letter, we quantize the Lorentz term of the gravitational Hamiltonian constraint in the spatially flat FRW model by two approaches different from that of the Euclidean term. One of the approaches is very similar to the treatment of the Lorentz part of Hamiltonian in loop quantum gravity and hence inherits more features from the full theory. Two symmetric Hamiltonian constraint operators are constructed respectively in the improved scheme. Both of them are shown to have the correct classical limit by the semiclassical analysis. In the loop quantum cosmological model with a massless scalar field, the effective Hamiltonians and Friedmann equations are derived. It turns out that the classical big bang is again replaced by a quantum bounce in both cases. Moreover, there are still great possibilities for the expanding universe to recollapse due to the quantum gravity effect.  相似文献   

4.
根据自旋交换算符的性质,讨论了自旋交换算符在量子力学中的某些应用,这一方法为两体自旋耦合体系的求解提供了方便的途径.  相似文献   

5.
6.
A profound quantum-gravitational effect of space–time dimension running with respect to the size of space–time region has been discovered a few years ago through the numerical simulations of lattice quantum gravity in the framework of causal dynamical triangulation [hep-th/0505113] as well as in renormalization group approach to quantum gravity [hep-th/0508202]. Unfortunately, along these approaches the interpretation and the physical meaning of the effective change of dimension at shorter scales is not clear. The aim of this Letter is twofold. First, we find that box-counting dimension in face of finite resolution of space–time (generally implied by quantum gravity) shows a simple way how both the qualitative and the quantitative features of this effect can be understood. Second, considering two most interesting cases of random and holographic fluctuations of the background space, we find that it is random fluctuations that gives running dimension resulting in modification of Newton's inverse square law in a perfect agreement with the modification coming from one-loop gravitational radiative corrections.  相似文献   

7.
Here we shall find the Green’s function of the difference equation of loop quantum cosmology. To illustrate how to use it, we shall obtain an iterative solution for closed model and evaluate its corresponding Bohmian trajectory.  相似文献   

8.
Using standard quantum network method, we analytically investigate the effect of Rashba spin–orbit coupling (RSOC) and a magnetic field on the spin transport properties of a polygonal quantum ring. Using Landauer–Büttiker formula, we have found that the polarization direction and phase of transmitted electrons can be controlled by both the magnetic field and RSOC. A device to generate a spin-polarized conductance in a polygon with an arbitrary number of sides is discussed. This device would permit precise control of spin and selectively provide spin filtering for either spin up or spin down simply by interchanging the source and drain.  相似文献   

9.
In this work, we try to propose in a novel way, using the Bose and Fermi quantum network approach, a framework studying condensation and evolution of a space-time network described by the Loop quantum gravity. Considering quantum network connectivity features in Loop quantum gravity, we introduce a link operator, and through extending the dynamical equation for the evolution of the quantum network posed by Ginestra Bianconi to an operator equation, we get the solution of the link operator. This solution is relevant to the Hamiltonian of the network, and then is related to the energy distribution of network nodes. Showing that tremendous energy distribution induces a huge curved space-time network may indicate space time condensation in high-energy nodes. For example, in the case of black holes, quantum energy distribution is related to the area, thus the eigenvalues of the link operator of the nodes can be related to the quantum number of the area, and the eigenvectors are just the spin network states. This reveals that the degree distribution of nodes for the space-time network is quantized, which can form space-time network condensation. The black hole is a sort of result of space-time network condensation, however there may be more extensive space-time network condensations, such as the universe singularity (big bang).   相似文献   

10.
In this work, we try to propose in a novel way, using the Bose and Fermi quantum network approach, a framework studying condensation and evolution of a space–time network described by the Loop quantum gravity. Considering quantum network connectivity features in Loop quantum gravity, we introduce a link operator, and through extending the dynamical equation for the evolution of the quantum network posed by Ginestra Bianconi to an operator equation, we get the solution of the link operator. This solution is relevant to the Hamiltonian of the network, and then is related to the energy distribution of network nodes. Showing that tremendous energy distribution induces a huge curved space–time network may indicate space time condensation in high-energy nodes. For example, in the case of black holes, quantum energy distribution is related to the area, thus the eigenvalues of the link operator of the nodes can be related to the quantum number of the area, and the eigenvectors are just the spin network states. This reveals that the degree distribution of nodes for the space–time network is quantized, which can form space–time network condensation. The black hole is a sort of result of space–time network condensation, however there may be more extensive space–time network condensations, such as the universe singularity (big bang).  相似文献   

11.
The Lindblad generators of the master equation define which kind of decoherence happens in an open quantum system. We are working with a two qubit system and choose the generators to be projection operators on the eigenstates of the system and unitary bilocal rotations of them. The resulting decoherence modes are studied in detail. Besides the general solutions we investigate the special case of maximally entangled states—the Bell singlet states. The results are depicted in the so-called spin geometry picture which allows to illustrate the evolution of the (nonlocal) correlations stored in a certain state. The question for which conditions the path traced out in the geometric picture depends only on the relative angle between the bilocal rotations is addressed.  相似文献   

12.
邓洪亮  方细明 《中国物理快报》2007,24(11):3051-3054
In this paper we propose a new scheme of long-distance quantum cryptography based on spin networks with qubits stored in electron spins of quantum dots. By" conditional Faraday- rotation, single photon polarization measurement, and quantum state transfer, maximal-entangled Bell states for quantum cryptography between two long-distance parties are created. Meanwhile, efficient quantum state transfer over arbitrary" distances is obtained in a spin chain by" a proper choice of coupling strengths and using spin memory- technique improved. We also analyse the security" of the scheme against the cloning-based attack which can be also implemented in spin network and discover that this spin network cloning coincides with the optimal fidelity- achieved by" an eavesdropper for entanglement-based cryptography.  相似文献   

13.
Spin is an important quantum degree of freedom in relativistic quantum information theory. This paper provides a first-principles derivation of the observable corresponding to a Stern–Gerlach measurement with relativistic particle velocity. The specific mathematical form of the Stern–Gerlach operator is established using the transformation properties of the electromagnetic field. To confirm that this is indeed the correct operator we provide a detailed analysis of the Stern–Gerlach measurement process. We do this by applying a WKB approximation to the minimally coupled Dirac equation describing an interaction between a massive fermion and an electromagnetic field. Making use of the superposition principle we show that the +1 and −1 spin eigenstates of the proposed spin operator are split into separate packets due to the inhomogeneity of the Stern–Gerlach magnetic field. The operator we obtain is dependent on the momentum between particle and Stern–Gerlach apparatus, and is mathematically distinct from two other commonly used operators. The consequences for quantum tomography are considered.  相似文献   

14.
In this paper we study the quantum phase transition and low temperature behavior in a square lattice quantum two-dimensional XY model with single-ion anisotropy and spin S=1. Starting with the Villain representation, a Landau-Ginzburg expression is written. The large D phase is studied using the bond operator formalism.  相似文献   

15.
First we contemplate the operational definition of space–time in four dimensions in light of basic principles of quantum mechanics and general relativity and consider some of its phenomenological consequences. The quantum gravitational fluctuations of the background metric that comes through the operational definition of space–time are controlled by the Planck scale and are therefore strongly suppressed. Then we extend our analysis to the braneworld setup with low fundamental scale of gravity. It is observed that in this case the quantum gravitational fluctuations on the brane may become unacceptably large. The magnification of fluctuations is not linked directly to the low quantum gravity scale but rather to the higher-dimensional modification of Newton's inverse square law at relatively large distances. For models with compact extra dimensions the shape modulus of extra space can be used as a most natural and safe stabilization mechanism against these fluctuations.  相似文献   

16.
With a view to address some of the basic problems of quantum cosmology, we formulate the quantum mechanics of the solutions of a Klein-Gordon-type field equation: (∂t2+D)ψ(t)=0, where and D is a positive-definite operator acting in a Hilbert space . In particular, we determine all the positive-definite inner products on the space of the solutions of such an equation and establish their physical equivalence. This specifies the Hilbert space structure of uniquely. We use a simple realization of the latter to construct the observables of the theory explicitly. The field equation does not fix the choice of a Hamiltonian operator unless it is supplemented by an underlying classical system and a quantization scheme supported by a correspondence principle. In general, there are infinitely many choices for the Hamiltonian each leading to a different notion of time-evolution in . Among these is a particular choice that generates t-translations in and identifies t with time whenever D is t-independent. For a t-dependent D, we show that regardless of the choice of the inner product the t-translations do not correspond to unitary evolutions in , and t cannot be identified with time. We apply these ideas to develop a formulation of quantum cosmology based on the Wheeler-DeWitt equation for a Friedman-Robertson-Walker model coupled to a real scalar field with an arbitrary positive confining potential. In particular, we offer a complete solution of the Hilbert space problem, construct the observables, use a position-like observable to introduce the wave functions of the universe (which differ from the Wheeler-DeWitt fields), reformulate the corresponding quantum theory in terms of the latter, reduce the problem of the identification of time to the determination of a Hamiltonian operator acting in , show that the factor-ordering problem is irrelevant for the kinematics of the quantum theory, and propose a formulation of the dynamics. Our method is based on the central postulates of nonrelativistic quantum mechanics, especially the quest for a genuine probabilistic interpretation and a unitary Schrödinger time-evolution. It generalizes to arbitrary minisuperspace (spatially homogeneous) models and provides a way of unifying the two main approaches to the canonical quantum cosmology based on these models, namely quantization before and after imposing the Hamiltonian constraint.  相似文献   

17.
A Hopf algebra structure of the extended three-dimensional quantum space is defined. A differential algebra of the extended three-dimensional quantum space is introduced and its Hopf algebra structure is explicitly given. The (undeformed) Lie algebra of three dimensional quantum space is obtained.  相似文献   

18.
The peculiar spectral properties of the spinboson model make it suitable for an investigation of quantum nonintegrability effects and level statistics from a new perspective. For fixed spin quantum numbers, its energy spectrum consists of 2s+1 sequences of levels with no upper bound. These sequences are identified and labelled consecutively by means of a quantum invariant calculated from the time average of a non-stationary operator. For integrable cases, level repulsion (on the energy axis) is limited to states within each sequence. From the observed spectral properties, we infer a series ofs-dependent level-spacing distributions. They converge towards a Poisson distribution fors. For nonintegrable cases, level repulsion becomes a universal phenomenon, but the amount of repulsion between two states decreases with increasing separation (in label) of the two sequences to which they belong. For smalls, the quantum nonintegrability effects are compelling but not at all chaotic. Nevertheless, they contain all the ingredients necessary to produce the symptoms commonly described as indicators of quantum chaos. In this model, we can observe quantum chaos in the making under very controllable conditions.  相似文献   

19.
We consider the dynamics of a quantum coherence of two chosen spins in systems of dipolar coupled nuclear spins s=1/2 in solid. With the purpose to study this coherence we suggest two different methods. One of them uses the partial trace technique and reduced density matrix. The second method is based on the calculation the intensity of multiple quantum coherences using two-spin operator and the density matrix of the whole spin system. Results of calculations of the multiple-quantum dynamics in spin clusters of various dimensionalities are presented. It is shown that the whole density matrix method is more informative than the method based on the reduced density matrix.  相似文献   

20.
Károlyházy uncertainty relation, which can be viewed also as a relation between UV and IR scales in the framework of an effective quantum field theory satisfying a black hole entropy bound, strongly favors the existence of dark energy with its observed value. Here we estimate the dynamics of dark energy predicted by the Károlyházy relation during the cosmological evolution of the universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号