首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
A systematic study of “lifted” Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2N=2 building blocks and the E8E8 factor by a modular isomorphic N=0N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.  相似文献   

3.
We study orbifolds by permutations of two identical N=2N=2 minimal models within the Gepner construction of four-dimensional heterotic strings. This is done using the new N=2N=2 supersymmetric permutation orbifold building blocks we have recently developed. We compare our results with the old method of modding out the full string partition function. The overlap between these two approaches is surprisingly small, but whenever a comparison can be made we find complete agreement. The use of permutation building blocks allows us to use the complete arsenal of simple current techniques that is available for standard Gepner models, vastly extending what could previously be done for permutation orbifolds. In particular, we consider (0,2)(0,2) models, breaking of SO(10)SO(10) to subgroups, weight-lifting for the minimal models and B-L lifting. Some previously observed phenomena, for example concerning family number quantization, extend to this new class as well, and in the lifted models three-family models occur with abundance comparable to two or four.  相似文献   

4.
We set up a strategy for studying large families of logarithmic conformal field theories by using the enlarged symmetries and non-semisimple associative algebras appearing in their lattice regularizations (as discussed in a companion paper [N. Read, H. Saleur, Enlarged symmetry algebras of spin chains, loop models, and S-matrices, cond-mat/0701259]). Here we work out in detail two examples of theories derived as the continuum limit of XXZ spin-1/2 chains, which are related to spin chains with supersymmetry algebras gl(n|n)gl(n|n) and gl(n+1|n)gl(n+1|n), respectively, with open (or free) boundary conditions in all cases. These theories can also be viewed as vertex models, or as loop models. Their continuum limits are boundary conformal field theories (CFTs) with central charge c=−2c=2 and c=0c=0 respectively, and in the loop interpretation they describe dense polymers and the boundaries of critical percolation clusters, respectively. We also discuss the case of dilute (critical) polymers as another boundary CFT with c=0c=0. Within the supersymmetric formulations, these boundary CFTs describe the fixed points of certain nonlinear sigma models that have a supercoset space as the target manifold, and of Landau–Ginzburg field theories. The submodule structures of indecomposable representations of the Virasoro algebra appearing in the boundary CFT, representing local fields, are derived from the lattice. A central result is the derivation of the fusion rules for these fields.  相似文献   

5.
Generalized Leibniz triangles have been used in nonextensive statistical mechanics as theoretical models that yield q  -Gaussians (q<1q<1) as attractors. We study such triangles from a probability point of view. Our results show that one can get any distribution on [0,1][0,1] (or any distribution that has a compact support, after a linear transform) from such triangles, including q  -Gaussians with q<1q<1. Next we propose conceptual models that are triangular arrays of row-wise exchangeable random variables and yield q  -Gaussians for q<1q<1 and q?1q?1 as attractors, via laws of large numbers and central limit theorems, respectively.  相似文献   

6.
We study integrable cases of pairing BCS hamiltonians containing several types of fermions. We prove that there exist three classes of such integrable models associated with classical rational r  -matrices and Lie algebras gl(2m)gl(2m), sp(2m)sp(2m) and so(2m)so(2m) correspondingly. We diagonalize the constructed hamiltonians by means of the algebraic Bethe ansatz. In the partial case of two types of fermions (m=2m=2) the obtained models may be interpreted as N=ZN=Z proton–neutron integrable models. In particular, in the case of sp(4)sp(4) we recover the famous integrable proton–neutron model of Richardson.  相似文献   

7.
8.
We study localization properties of disordered bosons and spins in random fields at zero temperature. We focus on two representatives of different symmetry classes, hard-core bosons (XY magnets) and Ising magnets in random transverse fields, and contrast their physical properties. We describe localization properties using a locator expansion on general lattices. For 1d Ising chains, we find non-analytic behavior of the localization length as a function of energy at ω=0ω=0, ξ−1(ω)=ξ−1(0)+A|ω|αξ1(ω)=ξ1(0)+A|ω|α, with αα vanishing at criticality. This contrasts with the much smoother behavior predicted for XY magnets. We use these results to approach the ordering transition on Bethe lattices of large connectivity KK, which mimic the limit of high dimensionality. In both models, in the paramagnetic phase with uniform disorder, the localization length is found to have a local maximum at ω=0ω=0. For the Ising model, we find activated scaling at the phase transition, in agreement with infinite randomness studies. In the Ising model long range order is found to arise due to a delocalization and condensation initiated at ω=0ω=0, without a closing mobility gap. We find that Ising systems establish order on much sparser (fractal) subgraphs than XY models. Possible implications of these results for finite-dimensional systems are discussed.  相似文献   

9.
Motivated by the necessity of discrete ZNZN symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)U(1)?s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1)U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)U(1)?s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1)U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1)U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5)SU(5) GUT models. We find examples of models with Z2Z2 (R-parity) and Z3Z3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.  相似文献   

10.
11.
We consider integrable quantum spin chains with alternating spins (S1,S2)(S1,S2). We derive a finite set of non-linear integral equations for the thermodynamics of these models by use of the quantum transfer matrix approach. Numerical solutions of the integral equations are provided for quantities like specific heat, magnetic susceptibility and in the case S1=S2S1=S2 for the thermal Drude weight. At low temperatures one class of models shows finite magnetization and the other class presents antiferromagnetic behaviour. The thermal Drude weight behaves linearly on T at low temperatures and is proportional to the central charge c   of the system. Quite generally, we observe residual entropy for S1≠S2S1S2.  相似文献   

12.
We investigate gauge-Higgs unification models in eight-dimensional spacetime where extra-dimensional space has the structure of a four-dimensional compact coset space. The combinations of the coset space and the gauge group in the eight-dimensional spacetime of such models are listed. After the dimensional reduction of the coset space, we identified SO(10)SO(10), SO(10)×U(1)SO(10)×U(1) and SO(10)×U(1)×U(1)SO(10)×U(1)×U(1) as the possible gauge groups in the four-dimensional theory that can accomodate the Standard Model and thus is phenomenologically promising. Representations for fermions and scalars for these gauge groups are tabulated.  相似文献   

13.
We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)U(1)-invariant lattice gauge theory in 2+12+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4×44×4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1)U(1) lattice gauge theory and the model considered in this paper.  相似文献   

14.
15.
We construct exact charged rotating black holes in Einstein–Maxwell–dilaton theory in D   spacetime dimensions, D?5D?5, by embedding the D  -dimensional Myers–Perry solutions in D+1D+1 dimensions, and performing a boost with a subsequent Kaluza–Klein reduction. Like the Myers–Perry solutions, these black holes generically possess N=[(D−1)/2]N=[(D1)/2] independent angular momenta. We present the global and horizon properties of these black holes, and discuss their domains of existence.  相似文献   

16.
17.
18.
When locally engineering F-theory models some D7D7-branes for the gauge group factors are specified and matter is localized on the intersection curves of the compact parts of the world-volumes. In this note, we discuss to what extent one can draw conclusions about F-theory models by just restricting the attention locally to a particular seven-brane. Globally, the possible D7D7-branes are not independent from each other and the (compact part of the) D7D7-brane can have unavoidable intrinsic singularities. Many special intersecting loci which were not chosen by hand occur inevitably, notably codimension-three loci which are not   intersections of matter curves. We describe these complications specifically in a global SU(5)SU(5) model and also their impact on the tadpole cancellation condition.  相似文献   

19.
We continue the study of U(1)U(1) vortices with cholesteric vacuum structure. A new class of solutions is found which represent global vortices of the internal spin field. These spin vortices are characterized by a non-vanishing angular dependence at spatial infinity, or winding. We show that despite the topological Z2Z2 behavior of SO(3)SO(3) windings, the topological charge of the spin vortices is of the ZZ type in the cholesteric. We find these solutions numerically and discuss the properties derived from their low energy effective field theory in 1+11+1 dimensions.  相似文献   

20.
We have recently developed methods for obtaining exact two-point resistance of the complete graph minus NN edges. We use these methods to obtain closed formulas of certain trigonometrical sums that arise in connection with one-dimensional lattice, in proving Scott’s conjecture on permanent of Cauchy matrix, and in the perturbative chiral Potts model. The generalized trigonometrical sums of the chiral Potts model are shown to satisfy recursion formulas that are transparent and direct, and differ from those of Gervois and Mehta. By making a change of variables in these recursion formulas, the dimension of the space of conformal blocks of SU(2)SU(2) and SO(3)SO(3) WZW models may be computed recursively. Our methods are then extended to compute the corner-to-corner resistance, and the Kirchhoff index of the first non-trivial two-dimensional resistor network, 2×N2×N. Finally, we obtain new closed formulas for variant of trigonometrical sums, some of which appear in connection with number theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号