首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we attempt to explain the molecular aspects of amino acids' hydration. Glycine and its N-methylated derivatives: N-methylglycine, N,N-dimethylglycine, and N,N,N-trimethylglycine were used as model solutes in aqueous solution, applying FT-IR spectroscopy as the experimental method. The quantitative version of the difference spectra method enabled us to obtain the solute-affected HDO spectra as probes of influenced water. The spectral results were confronted with density functional theory calculated structures of small hydration complexes of the solutes using the polarizable continuum model. It appears that the hydration of amino acids in the zwitterionic form can be understood allowing a synchronized fluctuation of hydrogen bonding between the solute and the water molecules. This effect is caused by a noncooperative interaction of water molecules with electrophilic groups of amino acid and by intramolecular hydrogen bond, allowing proton transfer from the carboxylic to the amine group, accomplishing by the chain of two to four water molecules. As a result, an instantaneous water-induced asymmetry of the carboxylate and the amino group of amino acid molecule is observed and recorded as HDO band splitting. Water molecules interacting with the carboxylate group give component bands at 2543 ± 11 and 2467 ± 15 cm(-1), whereas water molecules interacting with protons of the amine group give rise to the bands at 2611 ± 15 and 2413 ± 12 cm(-1). These hydration effects have not been recognized before and there are reasons to expect their validity for other amino acids.  相似文献   

2.
 Fourier transform infrared spectra in the wave number range 450–4500 cm-1 of poly (2-hydroxy-ethyl methacrylate) PHEMA have been studied as functions of water content in the range 38–2.6 wt% and of temperature in the range 300–373 K. The results show changes in the intensities of the stretching frequencies of the carbonyl band, H–O–H bending vibration and O–H stretching vibration with a change in water content and temperature. The results confirm two types of water in the hydrogel polymer system, tightly bound water and loosely bound water. At low concentrations, water is mainly hydrogen-bonded to the polymer and is described as tightly bound water. However, at water concentrations greater than 18% by weight, part of the water exists in a different form and behaves as loosely bound water. For concentrations over 30%, there is some evidence that excess water behaves more loosely bound somewhat like bulk water. Infrared spectroscopic results supplement those obtained by means of NMR by Smyth et al. and by dielectric spectroscopy. Our results also show that some of the water continues to be hydrogen bonded to the polymer until at least a temperature of 373 K when the bulk water should have evaporated. FTIR is found to yield greater site-specific insight into the local behaviour of water in hydrated PHEMA. Received: 22 August 1996 Accepted: 11 November 1996  相似文献   

3.
4.
5.
An ab initio investigation of the potential energy surfaces and vibrational energies and wave functions of the anion, neutral, and cation Cu(H(2)O) complexes is presented. The equilibrium geometries and harmonic frequencies of the three charge states of Cu(H(2)O) are calculated at the MP2 level of theory. CCSD(T) calculations predict a vertical electron detachment energy for the anion complex of 1.65 eV and a vertical ionization potential for the neutral complex of 6.27 eV. Potential energy surfaces are calculated for the three charge states of the copper-water complexes. These potential energy surfaces are used in variational calculations of the vibrational wave functions and energies and from these, the dissociation energies D(0) of the anion, neutral, and cation charge states of Cu(H(2)O) are predicted to be 0.39, 0.16, and 1.74 eV, respectively. In addition, the vertical excitation energies, that correspond to the 4 (2)P<--4 (2)S transition of the copper atom, and ionization potentials of the neutral Cu(H(2)O) are calculated over a range of Cu(H(2)O) configurations. In hydrogen-bonded, Cu-HOH configurations, the vertical excitation and ionization energies are blueshifted with respect to the corresponding values for atomic copper, and in Cu-OH(2) configurations where the copper atom is located near the oxygen end of water, both quantities are redshifted.  相似文献   

6.
Dimethylamine (DMA) has been studied by gas-phase Fourier transform infrared (FTIR) spectroscopy. We have identified a spectral transition that is assigned to the DMA dimer. The IR spectra of the dimer in the gas phase are obtained by spectral subtraction of spectra recorded at different pressures. The enthalpy of hydrogen bond formation was obtained for the DMA dimer by temperature-dependence measurements. We complement the experimental results with ab initio and anharmonic local mode model calculations of monomer and dimer. Compared to the monomer, our calculations show that in the dimer the N-H bond is elongated, and the NH-stretching fundamental shifts to a lower wavenumber. More importantly, the weak NH-stretching fundamental transition has a pronounced intensity increase upon complexation. However, the first NH-stretching overtone transition is not favored by the same intensity enhancement, and we do not observe the first NH-stretching overtone of the dimer. On the basis of the measured and calculated intensity of the NH-stretching transition of the dimer, the equilibrium constant for dimerization at room temperature was determined.  相似文献   

7.
Fourier transform infrared spectroscopy was used to identify and quantify products of the self reaction of ethylperoxy radicals, C2H5O2, formed in the photolysis of Cl2/C2H6 mixtures in 700 torr total pressure of synthetic air at 295 K. From these measurements, branching ratios for the reaction channels (1) of k1a/(k1a + k1b) = 0.68 and k1c/(k1a + k1b + k1c) ? 0.06 were established. Additionally, using the relative rate technique, the rate constant for the reaction of Cl atoms with C2H5OOH was determined to be (1.07 ± 0.07) × 10?10 × cm3 molecule?1 s?1. Results are discussed with respect to the previous kinetic and mechanistic studies of C2H5O2 radicals.  相似文献   

8.
First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.  相似文献   

9.
We report studies of supersonically cooled water complexes of m-aminobenzoic acid MABA.(H(2)O)n (n = 1 and 2) using two-color resonantly enhanced multiphoton ionization (REMPI) and UV-UV hole-burning spectroscopy. Density functional theory calculations are also carried out to identify structural minima of water complexes in the ground state. For the most stable isomers of both complexes, water molecules bind to the pocket of the carboxyl group in a cyclic hydrogen bond network. Vibrational frequency calculations for the first electronically excited state (S(1)) of these isomers agree well with the experimental observation. The addition of water molecules has a major impact on the normal mode that involves local motion of the carboxyl group, while negligible effects are observed for other normal modes. On the basis of the hole-burning experiment, two major isomers for each complex are identified, corresponding to the two conformers of the bare compound. Compared with the other two isomers of aminobenzoic acid, the red shifts of the origin bands due to water complexation in MABA are considerably larger. Similar to p-aminobenzoic acid and different from o-aminobenzoic acid, the existence of the intermolecular stretching mode is ambiguous in the REMPI spectrum of MABA.(H(2)O)n.  相似文献   

10.
Infrared measurements of the dicroic ratio of poly-(methyl methacrylate) absorption bands provide a valuable method for determining the orientation as well as the relaxation of chains during stretching. Different strain rates and temperatures of stretching were used. Orientation relaxation was determined and a master curve was obtained at a reference temperature TO = 135°C. The master curve shows that orientation relaxation behaves similarly to mechanical relaxation.  相似文献   

11.
In this study we focus on the differences and analogies of two experimental implementations of two-dimensional infrared (2D-IR) spectroscopy: double-resonance or dynamic hole burning 2D-IR spectroscopy and pulsed Fourier transform or heterodyne detected photon echo spectroscopy. A comparison is done theoretically as well as experimentally by contrasting data obtained from both methods. As an example we have studied the strongly coupled asymmetric and symmetric carbonyl stretching vibrations of dicarbonylacetylacetonato rhodium dissolved in hexane. Both methods yield the same peaks in a 2D-IR spectrum. Within certain approximations we derive an analytic expression which shows that the 2D-IR spectra are broadened in one frequency dimension in the double-resonance experiment by convolution with the pump pulse spectral width, while the spectral resolution in the other frequency direction is the same in both cases.  相似文献   

12.
In the present work diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is applied to study the adsorption of NO(x) at 300-500 °C in different atmospheres on gadolinium-doped ceria (CGO), an important material in electrodes investigated for electrochemical NO(x) removal. Furthermore, the effect on the NO(x) adsorption when adding K(2)O or BaO to the CGO is investigated. The DRIFT study shows mainly the presence of nitrate species at 500 °C, whereas at lower temperature a diversity of adsorbed NO(x) species exists on the CGO. The presence of O(2) is shown to have a strong effect on the adsorption of NO, but no effect on the adsorption of NO(2). Addition of K(2)O and BaO dramatically affects the NO(x) adsorption and the results also show that the adsorbed NO(x) species are mobile and capable of changing adsorption state in the investigated temperature range.  相似文献   

13.
Acidity of the oxidic molybdenum catalysts supported on mixed ZrO2-SiO2 and ZrO2-Al2O3 carriers was investigated by Fourier transform infrared spectroscopy of pyridine adsorption. Deposition of molybdenum on ZrO2-SiO2 and ZrO2-Al2O3 supports leads to formation of surface Br?nsted acid sites. The number of the Br?nsted and Lewis acid sites in supported-molybdenum catalysts depends on both the ZrO2 content and the type of the support. With increasing ZrO2 content, the Lewis acid sites increase for both series of catalysts. The Br?nsted acid sites are higher for Mo/ZrO2-SiO2 samples compared to those for Mo/ZrO2-Al2O3 and also increase with zirconia.  相似文献   

14.
15.
The Fourier transform infrared and the Fourier transform Raman spectra of N-di-isopropylphosphorylguanidine (DPG) in the solid state and in aqueous solution were recorded and analyzed. Assuming Cs symmetry for different structural fragment of the molecule, the experimental and calculated band assignments of the nu(NH), delta(HNH), delta(CNH), nu(C=N), nu(PN), nu(CN), nu(PO) and nu(OC) normal modes suggested that the DPG exists as a tautomeric contribution of the phosphorylamine (I) and N-phosphorylimine (II) structural forms. [structures: see text]  相似文献   

16.
Molecular structure and vibrational frequencies of triformylmethane have been investigated by means of density functional theory (DFT) calculations. The geometrical parameters and vibrational frequencies obtained in the B3LYP, B3PW91, BLYP, BPW91, G96LYP and G96PW91 levels of DFT and compared with the corresponding parameters of malonaldehyde (MA). Fourier transform infrared spectra of triformylmethane and its deuterated analogue were clearly assigned. Theoretical calculations show that the hydrogen bond strength of triformylmethane is stronger than that of MA, which is in agreement with spectroscopic results.  相似文献   

17.
The deviation of the NH(2) pseudo-first-order decay Arrhenius plots of the NH(2) + O(3) reaction at high ozone pressures measured by experimentalists, has been attributed to the regeneration of NH(2) radicals due to the subsequent reactions of the products of this reaction with ozone. Although these products have not yet been characterized experimentally, the radical H(2)NO has been postulated, because it can regenerate NH(2) radicals through the reactions: H(2)NO + O(3) --> NH(2) + O(2) and H(2)NO + O(3) --> HNO + OH + O(2). With the purpose of providing a reasonable explanation from a theoretical point of view to the kinetic observed behaviour of the NH(2) + O(3) system, we have carried ab initio electronic structure calculations on both H(2)NO + O(3) possible reactions. The results obtained in this article, however, predict that of both reactions proposed, only the H(2)NO + O(3) --> NH(2) + O(2) reaction would regenerate indeed NH(2) radicals, explaining thus the deviation of the NH(2) pseudo-first-order decay observed experimentally.  相似文献   

18.
In the paper a joint experimental and theoretical study of 3,5-dimethyl-1H-pyrazole-1-carboxamidine (L) as well as its complexes CoL2(H2O)2(NO3)2 and NiL2(H2O)2(NO3)2 is reported. On the basis of FT-IR experiments and a DFT-derived scaled quantum mechanical force field the normal coordinate analysis of L was carried out. The FT-IR spectra of the two complexes were interpreted using the present assignment of L and computed vibrational data of the complexes. The ionic and charge transfer interactions in the complexes were assessed by means of natural bond orbital (NBO) analysis.  相似文献   

19.
The rotationally resolved Fourier transform infrared (FTIR) spectrum of the nu(s) HCl and DCl stretching bands for the hydrogen bonded complex H2S-HCl and its isotopomer D2S-DCl have been observed in a supersonic jet at 0.02 cm(-1) resolution. In the same experimental conditions, two additional bands observed without rotational structure in the HCl range of the dimer have been assigned to the cyclic trimer H2S-(HCl)(2). The multidimensional coupling picture involving the donor stretch mode nu(s) and low frequency intermolecular modes already evidenced in several medium strength hydrogen bonded complexes is beautifully confirmed by the observation of completely separated hot band progressions in the 198 K cell spectrum of both dimers. Based on our anharmonic adiabatic approach for the treatment of the coupled vibrations, absolute vibrational frequencies, diagonal and off-diagonal anharmonicities as well as rovibrational coupling constants obtained from analyses of several 2-D subspaces at MP2 and CCSD(T) level are in excellent agreement with spectroscopic results. In the case of small light complexes, the combination of elevated rotational constants and a negligible contribution of intramolecular vibrational redistribution (IVR) improve the reliability of predissociation lifetime measurements, estimated to 180 ps for H2S-HCl and above 200 ps for D2S-DCl.  相似文献   

20.
The rotational spectrum of the cyclic (HCl)(2)H(2)O cluster has been identified for the first time in the chirped pulse, Fourier transform microwave spectrum of a supersonically expanded HCl/H(2)O/Ar mixture. The spectrum was measured at frequencies 6-18.5 GHz, and transitions in two inversion-tunneling states, at close to 1?:?3 relative intensity, have been assigned for the parent species. The two single (37)Cl isotopic species, and the double (37)Cl species have been assigned in the natural abundance sample, and the (18)O and HDO species of the cluster were identified in isotopically enriched samples. The rich nuclear quadrupole hyperfine structure due to the presence of two chlorine nuclei has been satisfactorily fitted and provided useful information on the nonlinearity of intermolecular bonds in the cluster. The r(s) heavy atom geometry of the cluster was determined and the strongest bond in the intermolecular cycle r(O···HCl) = 3.126(3) ?, is found to be intermediate in length between the values in H(2)O···HCl and (H(2)O)(2)HCl. The fitted spectroscopic constants and derived molecular properties are compared with ab initio predictions, and a discussion of complexation effects in these three clusters is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号