首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous-wave operation of a diode-pumped Nd:YVO4 laser with self-frequency Raman conversion is demonstrated. The threshold of Raman generation was measured to be 1.3 W of laser diode power. The maximum output power of Stokes radiation at the wavelength of 1177 nm was up to 50 mW at a laser diode pump power of 2.3 W, corresponding to the slope efficiency of 5%. The beam quality M2 of the Stokes radiation was about 1.4. The fluctuations of the Stokes power were minimised down to 4%. PACS 42.55.Ye; 42.60.Pk; 42.65.Dr  相似文献   

2.
Output power dependences of composite Nd3+:YVO4 Raman laser stationary generation on the longitudinal diode pump power are measured at different transmissions of the output mirror at the Stokes radiation frequency. The deviation of the measured dependences from linear is explained by the influence of thermal effects on both the overlap of the beams and diffraction losses. A method to estimate the laser and Stokes losses in the cavity and the parameters characterizing the overlap of the laser radiation with the pump and Stokes beams is proposed. A Stokes-component of power 2.1 W is obtained and corresponds to 12% diode-to-Stokes efficiency.  相似文献   

3.
Multimode pumped continuous-wave solid-state Raman laser   总被引:6,自引:0,他引:6  
We demonstrate the continuous-wave operation of a solid-state Raman laser containing a barium nitrate crystal as the Raman medium. The Raman laser, which has a singly resonant cavity, is pumped by multimode radiation. The Raman oscillation threshold is reached at approximately 2 W of pump power. As much as 500 kW/cm2 of Stokes power density at 60-kW/cm2 pump power density is obtained in the cavity.  相似文献   

4.
What is to the authors' knowledge the first experimental demonstration of a nonresonant cw Raman laser pumped by a tunable external-cavity diode laser (ECDL) is presented. The ECDL is phase-frequency locked to a high-finesse Raman laser cavity containing diatomic hydrogen (H(2)) by the Pound-Drever-Hall locking technique. The Stokes lasing threshold occurs at a pump power of 400 +/- 30 muW, and a maximum photon conversion efficiency of 12.0 +/- 1.3% is achieved at 1.6 mW of pump power. A 40-nm tuning range of the cw Stokes emission, 1174-1214 nm, is obtained by tuning of the wavelength of the ECDL pump source.  相似文献   

5.
Diode pumped continuous-wave intracavity Raman conversion in a composite Nd:KGW/KGW crystal has been investigated. The use of a Nd:KGW/KGW crystal instead of the ordinary Nd:KGW crystal has made it possible to considerably decrease intracavity losses. A Raman threshold corresponding to a diode laser power of 230 mW and a quantum efficiency of conversion of diode laser radiation to the Stokes radiation of 22% have been obtained. PACS 42.55.Rz; 42.55.Xi; 42.55.Ye  相似文献   

6.
The operation of an all solid-state pulsed Nd:KGW Raman laser pumped by compact passively Q-switched Nd:YAG/Cr:YAG laser is demonstrated. The first-Stokes radiation of stimulated Nd:KGW Raman scattering at the 1178 nm is generated. The average output power of 336 mW at Stokes wavelength was obtained under the laser diode pump power of 5.74 W. The corresponding optical efficiency from the diode light to the Raman output is 9.85%. The pulse width of 1.65 ns and a pulse repetition rate of 10 kHz were also obtained.  相似文献   

7.
陈慧挺  楼祺洪  董景星  陈万春 《光子学报》2006,35(10):1441-1444
橘黄色波段固体激光器在基于荧光探测的生物医学诊断和显示等众多方面有着广泛的实际应用. 报道了利用532 nm的Nd∶YAG倍频激光抽运外置喇曼腔内的硝酸钡晶体,获得高效率的599 nm橘黄色喇曼激光的实验结果.对外置喇曼腔实验装置和运转参量进行了优化,喇曼振荡腔由对二阶斯托克斯光有最优化反射率的腔镜构成,对实验中所得到的二阶斯托克斯喇曼激光脉宽压缩及出现双尖峰的现象进行了分析.当抽运光功率达到4.1 W时,获得二阶斯托克斯喇曼激光功率为710 mW,输出光中心波长为599.38 nm,半峰全宽(FWHM)为1.1 nm,激光器最大光光转换效率为17.5%,斜率效率为24.8%.  相似文献   

8.
A KGd(WO?)? Raman laser was pumped within the cavity of a cw diode-pumped InGaAs semiconductor disk laser (SDL). The Raman laser threshold was reached for 5.6 W of absorbed diode pump power, and output power up to 0.8 W at 1143 nm, with optical conversion efficiency of 7.5% with respect to the absorbed diode pump power, was demonstrated. Tuning the SDL resulted in tuning of the Raman laser output between 1133 and 1157 nm.  相似文献   

9.
We report 33% efficient generation of the first Stokes in a high-concentration GeO(2) fiber Raman laser pumped by a 22 W thulium-doped fiber laser. An output power of 4.6 W at 2.105 microm is demonstrated.  相似文献   

10.
We report on what is, to our knowledge, the first cw pumped Raman fiber-gas laser based on a hollow-core photonic crystal fiber filled with hydrogen. The high efficiency of the gas-laser interaction inside the fiber allows operation in a single-pass configuration. The transmitted spectrum exhibits 99.99% of the output light at the Stokes wavelength and a pump power threshold as low as 2.25 W. The study of the Stokes emission evolution with pressure shows that highly efficient Raman amplification is still possible even at atmospheric pressure. The addition of fiber Bragg gratings to the system, creating a cavity at the Stokes wavelength, reduces the Raman threshold power below 600 mW.  相似文献   

11.
An approximate method of modelling of Raman generation in silicon-on-insulator (SOI) rib waveguide with DBR/F-P resonator including spatial field distribution and nonlinear effects such as Raman amplification and two photon absorption (TPA), is developed. In threshold analysis of steady-state Raman laser operation, an analytical formula relating threshold pump power to the system parameters is obtained. The analysis of the above threshold operation is based on an energy theorem. In exact energy conservation relation, we approximate the Stokes field distributions by that existing at the threshold, whereas the approximate pump field distributions are obtained by integrating the equations for the pump signal using the linear (threshold) pump field distributions and the threshold Stokes field distributions. An approximate, semi-analytical expression related the Raman output power to the pump power and system parameters is derived. Our calculations remain in a good agreement with the exact numerical solutions.  相似文献   

12.
The generation of high pulse and average power radiation in the eye-safe region (wavelength around 1.599 μm) by the third Stokes generation in a barium nitrate Raman laser was demonstrated by pumping with 10 ns pulses of a Nd:YAG laser. Converted pulse energy was up to 93 mJ (peak power was 10 MW) at a pump energy of 300 mJ, which corresponds to a quantum efficiency of 47%. The average output power of the third Stokes radiation was 1.8 W.  相似文献   

13.
We demonstrate efficient Raman lasing with CaF2 whispering-gallery-mode resonators. Continuous-wave emission threshold is shown to be possible below 1 microW with a 5mm cavity, which is to our knowledge orders of magnitude lower than in any other Raman source. Low-threshold lasing is made possible by the ultrahigh optical quality factor of the cavity, of the order of Q=5x10(10). Stokes components of up to the fifth order were observed at a pump power of 160 microW, and up to the eighth order at 1 mW. A lasing threshold of 15 microW was also observed in a 100 microm CaF2 microcavity. Potential applications are discussed.  相似文献   

14.
We have studied the conditions resulting in maximum lowering of the excitation threshold for pulsed stimulated Raman (SRS) lasers. It has been shown theoretically that in order to achieve the lowest possible values of laser radiation pulse energy needed to excite lasing in SRS lasers, we need high reflection of the cavity mirrors and low losses at the wavelength of the 1st Stokes component, high reflection of the output mirror at the wavelength of the pump radiation, and also matching of the confocal parameters for the exciting laser radiation and the cavity with each other and with the length of the Raman-active medium. The experimentally achieved excitation threshold for an SRS laser based on a barium nitrate crystal was 6 μJ, which quantitatively corresponds well to the calculation results. Lasing of up to five Stokes components simultaneously occurred. The efficiency for conversion of the laser radiation to one component was as high as 39%. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 2, pp. 284–290, March–April, 2008.  相似文献   

15.
We demonstrate a high-power single-mode cladding-pumped Raman fiber laser. The Raman fiber laser consists of a 1.2 km long germanium-doped double-clad fiber in a linear cavity, which is spliced to a single-mode fiber. The laser is end pumped by a multimode erbium-ytterbium-doped fiber, which is coupled to the inner cladding of the Raman fiber. The embedded core was designed to be single mode at the Raman Stokes wavelength, and up to 10 W of power was obtained at 1660 nm from the single-mode fiber end. The laser has a slope efficiency of 67% and a threshold of 6.5 W.  相似文献   

16.
A diode end-pumped acousto-optic Q-switched Nd:YVO_4/LuVO_4 Raman laser is demonstrated. Both YVO_4 and LuVO_4 can work as Raman gain, and slightly different active vibration modes of both crystals can result in different first-Stokes wavelengths. The output characteristic as the Raman competition between YVO_4 and LuVO_4 crystals for the laser systems with both shared cavity and coupled cavity is experimentally investigated.For the shared cavity, simultaneous Raman conversion in both YVO_4 and LuVO_4 crystals is achieved with dualwavelength emission at 1175.8 and 1177.1 nm. The maximum output power of 1.03 W and the conversion efficiency of 10.3% are obtained. The 0.84 W single first Stokes wavelength at 1177.1 nm with LuVO_4 Raman conversion is achieved with the coupled cavity. The results show that the coupled cavity with short Raman cavity can obtain a narrow pulse width. The separated laser crystal and Raman gain media with different vanadates in shared cavity have advantages in achieving dual-wavelength lasers with small frequency intervals.  相似文献   

17.
We demonstrate a diode-pumped cw Raman laser in H(2) with photon-conversion efficiency of (66+/-8)%. Pumped by an injection-locked diode laser at 792 nm, the Stokes laser produces a peak output power of ~16mW at 1180 nm. Accompanying the high Stokes power are deviations from the existing theory, which are believed to be caused by the thermal-lensing effect of the Raman gas.  相似文献   

18.
Zhao Y  Jackson SD 《Optics letters》2006,31(6):751-753
Operation of a short all-fiber passively Q-switched Raman laser pumped by a continuous-wave laser diode is experimentally demonstrated. The passively switched fiber laser consists simply of a double-clad ytterbium-doped silica fiber that is spliced directly to a moderately germanium-doped silica fiber. The placement of the Ge-doped silica fiber within the fundamental (Raman pump) cavity allows interplay between fundamental and Stokes fields to take place, which leads to saturation of the Raman gain as a result of pump depletion. Pulse widths of 70 and 60 ns at the first and second Stokes wavelengths of 1168 and 1232 nm, respectively, are produced at a stable 588 kHz repetition rate.  相似文献   

19.
Chen YF 《Optics letters》2005,30(4):400-402
A potassium titanyl phosphate crystal is used to achieve efficient stimulated Raman scattering conversion with simultaneous self-sum frequency mixing and self-frequency doubling. Inside a diode-pumped Nd:YAG Q-switched laser cavity, 1.03 W of 1129-nm second Stokes average output power and 0.25 W of 548-nm sum-frequency average power are simultaneously generated with a diode input power of 10 W at a pulse repetition rate of 10 kHz.  相似文献   

20.
Efficient numerical modelling of the power, spectral and statistical properties of partially coherent quasi-CW Raman fiber laser radiation is presented. XPM between pump wave and generated Stokes wave is not important in the generation spectrum broadening and XPM term can be omitted in propagation equation what sufficiently speeds-up simulations. The time dynamics of Raman fiber laser (RFL) is stochastic exhibiting events several times more intense that the mean value on the ps timescale. However, the RFL has different statistical properties on different time scales. The probability density function of spectral power density is exponential for the generation modes located either in the spectrum centre or spectral wings while the phases are distributed uniformly. The pump wave preserves the initial Gaussian statistics during propagation in the laser cavity. Intense pulses in the pump wave are evolved under the SPM influence and are not disturbed by the dispersion. Contrarily, in the generated wave the dispersion plays a significant role that results in stochastic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号