首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Fluid Phase Equilibria》1986,28(3):309-323
Hahn, G. Svejda, P. and Kehiaian, H.V., 1986. Excess enthalpies of the liquid systems: 1,2-dichloroethane + n-alkanes or +2,2,4-trimethylpentane. Fluid Phase Equilibria, 28: 309-323.Molar excess enthalpies, hE, at 293.15 K and atmospheric pressure are reported for the binary liquid mixtures of 1,2-dichloroethane + haptane, + decane, + dodecane, + tetradecane, + hexadecane or + 2,2,4-trimethylpentane, all determined by means of a flow microcalorimeter of the Picker-type. These measurements could be reproduced within the experimental limits by calculations according to a quasi-chemical group contribution theory, using constant values for two interchange energy coefficients, C1,ad (Gibbs energy) and C2,ad (enthalpy). Fair agreement between the calculated excess heat capacities, eEp, and the experimental literature values could be obtained by adjusting a third coefficient, C3,ad (heat capacity). However, C3,ad decreases with increasing chain length of the n-alkane. Even with three C1,ad coefficients the model cannot reproduce the exact shape of the cEp versus composition curves. Apparently, not only the terms of an interchange of group surface contacts, but also conformational changes occurring in n-alkanes on mixing, contribute to the excess functions. The set of C1,ad coefficients reported in this paper should prove useful in predicting phase equilibria in liquid 1,2-dichloroethane + n-alkane mixtures.  相似文献   

2.
The excess volumes, VE, of some binary 1,2-dichloroethane mixtures have been determined at 30°C. The data have been examined for Cell model theory of Prigogine and Flory's theory. Both theories have been found to fail to fit the results with useful accuracy.  相似文献   

3.
Excess volumes of mixing, VE, for binary mixtures of 1,2-dichloroethane with benzene, toluene, o?, m?, and p-xylenes have been determined at 308.15 K over the complete composition range. VE is positive for all these mixtures and varies in the order m-xylene >o-xylene >p-xylene > benzene > toluene. The experimental data have been analyzed in terms of the Prigogine's average potential cell model coupled with Balescu's theory. The calculated VE values do not agree with the corresponding experimental values.  相似文献   

4.
Molar excess heat capacities at constant pressure, CEp, of binary liquid mixtures chloroform + oxolane, chloroform + 1,3-dioxolane, chloroform + oxane, and chloroform + 1,4-dioxane have been determined at 298.15 K from measurements of volumetric heat capacities in a Picker flow microcalorimeter. A precision of ±0.04 J K?1 mole? was achieved by using the stepwise procedure. Experimental molar excess heat capacities are compared with values derived from HE results at different temperatures. Excess molar volumes, VE, for the same systems at 298.15 K have been determined by measuring the density of the pure liquids and solutions with a high-precision digital flow densimeter.  相似文献   

5.
Measurements of volumetric heat capacities at constant pressure, Cp/V (V being the molar volume), at 298.15 K, of the binary liquid mixtures 1,1,1-trichloroethane + oxolane, +1,3-dioxolane, +oxane, +1,3-dioxane, and +1,4-dioxane were carried out in a Picker-type flow microcalorimeter. Molar heat capacities at constant pressure. Cp, and molar excess heat capacities, CEp, were calculated from these results as a function of the mole fraction. CEp values for these systems are positive and the magnitude depends on the size of the cycle and on the relative position of the oxygen atoms in the cyclic diethers. The precision and accuracy for CEp are estimated as better than 2%. Molar excess volumes, VE, for the same systems, at 298.15 K, have been determined from density measurements with a high-precision digital flow densimeter. The experimental results of VE and CEp, are interpreted in terms of molecular interactions.  相似文献   

6.
《Fluid Phase Equilibria》1998,152(2):277-282
Excess molar volumes VmE have been measured using a dilatometric technique for mixtures of cyclohexanone (C6H10O) with trichloromethane (CHCl3), 1,2-dichloroethane (CH2ClCH2Cl), trichloroethene (CHClCCl2), 1,1,1-trichloroethane (CCl3CH3), and cyclohexane (c-C6H12) at T=308.15 K, and for cyclohexanone+dichloromethane (CH2Cl2) at T=303.15 K. Throughout the entire range of the mole fraction χ of C6H10O, VmE has been found to be positive for χ C6H10O+(1−χ)c-C6H12, and negative for χ C6H10O+(1−χ)CH2Cl2, χ C6H10O+(1−χ)CHClCCl2, χ C6H10O+(1−χ)CHCl3, and χ C6H10O+(1−χ) CCl3CH3. For χ C6H10O+(1−χ)CH2ClCH2Cl, VmE has been found to be positive at lower values of χ and negative at high values of χ, with inversion of sign from positive to negative values of VmE for this system occurring at χ∼0.78. Values of VmE for the various systems have been fitted by the method of least squares with smoothing equation, and have been discussed from the viewpoint of the existence specific interactions between the components.  相似文献   

7.
Volume changes on mixing of binary systems formed by 1,2-dichloroethane andn-alcohols, namely, ethanol,n-propanol,n-butanol,n-pentanol andn-hexanol were measured as a function of composition at 30, 35, 40 and 45 °C. At all compositions theV E values are all positive for all systems. The molar excess volumes of mixing for equimolar mixtures increase as the length of carbon chain increases.V E becomes more positive on increasing temperature. The positive value of the excess volume has been attributed to breaking of hydrogen bonds of associated species of alcohol by dilution with 1,2-dichloroethane.  相似文献   

8.
Thermophysical properties for binary mixture of tetraethylene glycol (T4EG) (1) + 1,2-ethanediamine (EDA) (2), a potential scrubbing solution for the absorption of CO2, are very important as well as lacking in the literatures. This work reports densities and viscosities over the entire concentration range for the binary mixture at T = (293.15-318.15) K under atmospheric pressure. According to the experimental density and viscosity values, the mixtures’ excess molar volume (VmE), absolute viscosity deviation (?η), excess free energies of activation (?G*E), apparent molar volumes, partial molar volumes and isobaric thermal expansion coefficient were calculated, respectively. Meanwhile, the VmE, ?η and ?G*E values were fitted by a Redlich–Kister equation to obtain coefficients. To further study, the Fourier transform infrared, UV-Vis and fluorescence spectra of T4EG + EDA mixtures with various concentrations were measured, and the intermolecular interaction of T4EG with EDA was also discussed as the formation of –OCH2CH2O–H···N(H2)CH2CH2(H2)N···.  相似文献   

9.
New refractive indices at 25 °C were measured and are reported here for 19 binary mixtures of pentan-3-one+1,2-dichloroethane, +1,3-dichloropropane, +1,4-dichlorobutane, +trichloromethane, +1,1,1-trichloroethane, +1,1,2,2-tetrachloroethane; cyclopentanone+1-chlorobutane, +1,1,2,2-tetrachloroethane; cyclohexanone+1,1,2,2-tetrachloroethane; 5-chloro-2-pentanone+n-hexane, +toluene, +ethylbenzene; nitromethane+trichloromethane; and nitromethane or nitroethane, +1,2-dichloroethane, +1,3-dichloropropane, +1,4-dichlorobutane. The experimental refractive index deviations from linear mixing behavior have been evaluated and correlated consistently with the 3-parameter Redlich–Kister equation with good results. The molar refraction was also examined for the systems including pentan-3-one, cyclopentanone, cyclohexanone and 5-chloro-2-pentanone for which densities and excess molar volumes are available from previous works. Different theoretical (n, ρ) mixing rules were tested for these systems. The excess Gibbs energy G E and excess enthalpy H E values were considered together with the excess molar volumes V E, excess refractive indexes $ n_{\text{D}}^{\text{E}} $ , molar refraction R and excess molar refractions R E on mixing in the discussion of the influence of the alkyl chain length or of the nature of the second component in the mixture in terms of molecular interactions.  相似文献   

10.
Volume changes on mixing for the binary systems formed by chlorobenzene with 1,2-dichloroethane, 1,1,1-trichloroethane and 1,1,2,2-tetrachloroethane, and by bromobenzene with 1,2-dichloroethane, 1,1,1-trichloroethane and 1,1,2,2-tetrachloroethane, have been measured as functions of composition at 303.15 and 313.15 K. The measured excess volumes are positive over the entire range of composition for the binary systems chlorobenzene + 1,2-dichloroethane and bromobenzene + 1,2-dichloroethane at 303.15 K, and for chlorobenzene + 1,1,2,2-tetrachloroethane at 313.15 K. The measured volumes VE are negative over the entire composition range for the remaining systems, except for the system chlorobenzene + 1,1,2,2-tetrachloroethane at 303.15 K, where an inversion of the sign of VE is observed over part of the concentration range.  相似文献   

11.
The isothermal compressibilities KT for cyclohexane + benzene, cyclohexane + toluene and benzene + toluene systems at 25, 35, 45 and 60°C have been used to test the Prigogine-Flory theory using Van der Waals and Lennard-Jones energy potentials. Flory's energy parameter X 12 was calculated for these systems at the four temperatures. From X 12 for the equimolar mixture, the following excess functions were calculated: (?VE/?p)T which is related to K T E , the heat of mixing H E , and the excess volume V E . The theory and any of the two potentials give (?VE/?p)T which fit the experimental data, but H E and V E , calculated using the same X 12 parameter, depart appreciably from the experimental data even though they agree in sign and have the essential features of the excess functions. The departure is apparent in both magnitude (in particular for the cyclohexane + benzene, and cyclohexane + toluene systems) and in the temperature dependence. The conclusion is that the X 12 parameter does not predict the thermodynamic properties of these systems and the Lennard-Jones potential, involving a more complicated expression, does not contribute any improvement over the Van der Waals potential.  相似文献   

12.
Thermodynamic properties (densities and viscosities) of binary mixtures of diethyl phthalate (DEP) + bromocyclohexane, dibutyl phthalate (DBP) + 1,2-dichlorobenzene, and vinyl acetate (1) + dimethyl phthalate (DMP) (2), + diethyl phthalate (2), or + dibutyl phthalate (2) were measured over the whole range of mole fractions at atmospheric pressure and different temperatures (T = 298.15 K to 308.15 K). For these mixtures, their excess molar volumes (V E) and viscosity deviations (Δη) were calculated from the experimental data. These results were correlated with the Redlich-Kister polynomial equation to derive the coefficients and standard errors.  相似文献   

13.
Excess volumes VE measured at 298.15 K in a successive-dilution dilatometer are reported for binary mixtures of the n-alkanols C1 to C4 + n-heptane. For ethanol +, and n-butanol + n-heptane, the measurements were extended to high dilutions of alkanol. VE is positive for all of the mixtures but decreases rapidly in magnitude for increasing chain length of the n-alkanol. The results were used to estimate the excess partial molar volumes of the components.  相似文献   

14.
15.
Molar excess volumes VEijk of methylenebromide i + pyridine j + β-picoline (k, cyclohexane (i) + pyridine (j) + β-picoline(K), benzene(i)+toluene(j)+1,2-dichloroethane(k), benzene(i) + 0-xylene(j) + 1,2-dichloroethane(k) and benzene(i) + p-xylene(j) + 1,2-dichloroethane(k) mixtures have been determined dilatometrically at 298.15 K. The data have been examined in terms of Sanchez and Lacombe theory and the graph-theoretical approach, and it is found that they are described well by the latter. Self- and cross-volume interaction coefficients Vjk, Vjjk and Vjkk, etc., have also been evaluated and the values utilised to study molecular interactions between the jth and kth molecular species in the presence of the ith in these i + j + k mixtures.  相似文献   

16.
17.
The excess molar volumes VmE at T=298.15 have been determined in the whole composition domain for (2-methoxyethanol + tetrahydrofuran + cyclohexane) and for the parent binary mixtures. Data on VmE are also reported for (2-ethoxyethanol + cyclohexane). All binaries showed positive VmE values, small for (methoxyethanol + tetrahydrofuran) and large for the other ones. The ternary VmE surface is always positive and exhibits a smooth trend with a maximum corresponding to the binary (2-methoxyethanol + cyclohexane). The capabilities of various models of either predicting or reproducing the ternary data have been compared. The behaviour of VmE and of the excess apparent molar volume of the components is discussed in both binary and ternary mixtures. The results suggest that hydrogen bonding decreases with alcohol dilution and increases with the tetrahydrofuran content in the ternary solutions.  相似文献   

18.
《Fluid Phase Equilibria》1986,25(2):195-208
Awwad, A.M. and Salman, M.A., 1986. Excess molar volumes and viscosities of binary mixtures of cyclohexane and n-alkane at 298.15 K. Fluid Phase Equilibria, 25: 195-208.Excess molar volumes, viscosities, excess molar viscosities, and excess molar activation energies of viscous flow were determined for binary mixtures of cyclohexane + n-pentane, + n-hexane, + n-heptane, + n-octane, + n-nonane, + n-decane, + n-dodecane, + n-tetradecane and + n-hexadecane at 298.15 K. The effect of orientational order of n-alkane on solution molar volumes and viscosities is investigated as well as the adequacy of the Flory theory and free volume theories used to predict solution molar volumes and viscosities. For longer n-alkanes VE, ηE and ΔG*E are positive and associated with the orientational order.  相似文献   

19.
The excess molar volumes, V mE, viscosity deviations, Δη, and excess Gibbs energies of activation, ΔG *E, of viscous flow have been investigated from density and viscosity measurements for two ternary mixtures, 1-butanol + triethylamine + cyclohexane and 1-pentanol + triethylamine + cyclohexane, and corresponding binaries at 303.15 K and atmospheric pressure over the entire range of composition. The empirical equations due to Redlich-Kister, Kohler, Rastogi et al., Jacob-Fitzner, Tsao-Smith, Lark et al., Heric-Brewer, and Singh et al. have been employed to correlate V mE, Δη and ΔG *E of the ternary mixtures with their corresponding binary parameters. The results are discussed in terms of the molecular interactions between the components of the mixture. Further, the Extended Real Associated Solution, ERAS, model has been applied to V mE for the present binary and ternary mixtures, and the results are compared with experimental data.  相似文献   

20.
The excess molar volumes VmE for binary liquid mixtures containing dipropylene glycol monomethyl ether or dipropylene glycol monobutyl ether and methanol, 1-propanol, 1-pentanol and 1-heptanol have been measured as a function of composition using a continuous dilution dilatometer at T=(288.15, 298.15, and 308.15) K and atmospheric pressure over the whole concentration range. The excess volume results allowed the following mixing quantities to be reported in all range of concentrations or at equimolar concentrations: α, volume expansivity; (∂VmE/∂T)p; (∂HE/∂P)T at T=298.15 K. The obtained results have been compared at T=298.15 K with the calculated values by using the Flory theory of liquid mixtures. The theory predicts the α, and αE values rather well, while the calculated values of (∂VmE/∂T)p and (∂HE/∂P)T show general variation with the alkyl chain length of the alkoxypropanols. The results are discussed in terms of order or disorder creation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号