首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An attempt has been made to calculate the free energy values for possible reactions utilising the available thermodynamic data in order to study the sulfation of CuO, Fe2O3, MnO2 and NiO with (NH4SO4, and further trials have been made to determine the exact reaction through differential thermal analysis. There is no real correlation between the theoretical value of ΔH° and that calculated from the DTA peak, which may be due to some uncertainty in the thermodynamic values and the possibility of some side reactions.  相似文献   

2.
The activity of NiAl2O4 in NiAl2O4MgAl2O4 solid solutions has been measured by using a solid oxide galvanic cell of the type, Pt, Ni + NiAl2O4 + Al2O3(α)/CaOZrO2/Ni + NixMg1?xAl2O4 + Al2O3(α). Pt, in the temperature range 750–1150°C. The activities in the spinel solid solutions show negative deviations from Raoult's law. The cation distribution in the solid solutions has been calculated using site preference energies independent of composition for Ni2+, Mg2+, and Al3+ ions obtained from crystal field theory and measured cation disorder in pure NiAl2O4 and MgAl2O4, and assumi g ideal mixing of cations on the tetrahedral and octahedral positions. The calculated values correctly predict the decrease in the fraction, α, of Ni2+ ions on tetrahedral sites for 1>x>0.25, observed by Porta et al. [J. Solid State Chem.11, 135 (1974)] but do not support their tentative evidence for an increase in α for x < 0.25. The measured excess free energy of mixing can be completely accounted for by using either the calculated or the measured cation distributions. This suggests that the Madelung energy is approximately a linear function of composition in the solid solutions. The composition of NiOMgO solid solutions in equilibrium with NiAl2O4MgAl2O4 solid solutions has been calculated from the results and information available in literature.  相似文献   

3.
The experimental values of the excess enthalpy, obtained by direct calorimetry, are reported in this work for the RbFRb2SO4 liquid system. The entropy of mixing of this system was calculated from the equilibrium phase diagram.Many expressions have been presented in the literature for the ideal entropy of mixing of ABin2A′B asymmetrical systems and we have pointed out, here, a criterion allowing the selection of one of them for a further evaluation of the excess entropy.A comparative study of the thermodynamic excess functions (δHSE)was carried out on the series of AFA2SO4 mixtures (ALi, Na, K, Rb).  相似文献   

4.
The thermodynamic properties of some solid solutions in the CaOZrO2 system have been investigated by using solid electrolyte galvanic cells of the type: O2, Pt|CaO, CaF2|CaF2 (tF = 1)| δCaO(1 ? δ)ZrO2, CaF2|Pt, O2. The influence of CaF2 added in electrodes on the thermodynamic equilibrium was investigated. It was shown that the heterogeneous field with cubic solid solution reaches the composition x = 0.17 mole of CaO. The results indicate that addition of ZrO2 to the saturated solid solution produces a significant decrease in the activity of CaO. Measured data were used to calculate thermodynamic parameters of reactions with saturated solid solutions Ca0.17 Zr0.83 O1.83, ZrO2, and CaZrO3. At temperatures below 820°C, saturated solid solutions have a tendency to decompose into CaZrO3 and ZrO2. A comparison of the thermodynamic results with available data on phase relationships in the CaOZrO2 system is presented. High thermodynamic stability of SrZrO3 and BaZrO3 is one of the reasons for the absence of cubic solid solutions in the system MeOZrO2 (MeSr, Ba).  相似文献   

5.
Experimental differential cross sections for 40 keV electrons scattered by C2H2, C2H4 and C2H6 molecules were measured using the gas electron diffraction method in the range of the scattering variable s from s = 1 A?1 to s = 30 A?1. The differential cross sections for neon were also measured and compared with calculated differential cross sections to calibrate the diffractograph. Experimental differential cross sections show significant deviations with respect to theoretical differential cross sections calculated from the Debye-Ehrenfest model, mainly in the range of small scattering angles. The observed differences are connected to chemical binding effects. From the experimental data, an estimation of the binding energy was carried out. The deduced values: ?0.58 ± 0.20 au for C2H2, ?0.94 ± 0.30 au for C2H4 and ?1.23 ± 0.40 au for C2H6 are in agreement with those obtained by thermochemical methods.  相似文献   

6.
The standard free energies of formation of zinc aluminate and chromite were determined by measuring the oxygen potential over a solid CuZn alloy, containing 10 at.?% Zn, in equilibrium with ZnO, ZnAl2O4+Al2O3(χ) and ZnCr2O4+Cr2O3, in the temperature range 700–900°C. The oxygen potential was monitored by means of a solid oxide galvanic cell in which a Y2O3ThO2 pellet was sandwiched between a CaOZrO2 crucible and tube. The temperature dependence of the free energies of formation of the interoxidic compounds can be represented by the equations,
The heat of formation of the spinels calculated from the measurements by the “Second Law method” is found to be in good agreement with calorimetrically determined values. Using an empirical correlation for the entropy of formation of cubic spinel phases from oxides with rock-salt and corundum structures and the measured high temperature cation distribution in ZnAl2O4, the entropy of transformation of ZnO from wurtzite to rock-salt structure is evaluated.  相似文献   

7.
The preparation of the compounds Sr2CrO4, Ba2CrO4, and Ba3CrO5 is described. The characterization of these three Cr4+ compounds by X-ray and magnetic susceptibility experiments has been conducted. The magnetic moments for Sr2CrO4, Ba2CrO4, and Ba3CrO5 were determined to be in good agreement with the calculated value expected for a tetrahedral Cr4+ ion. Weak antiferromagnetic ordering for all three compounds is indicated from the small paramagnetic Weiss constants determined from the susceptibility data in the temperature region 80–300 K. Distortions of the tetrahedra from ideality, as determined from the structural features, further cause a reduction in the magnetic moments from the theoretical values.  相似文献   

8.
Enthalpies of formation of ground states of the gaseous particles CF, CF2, C2F5, CF4, CF3I, C2F4, and C2F6 were calculated by ab initio method in the CCSD(T) approximation with extrapolation to the full basis and regard to the correlation energy. Their equilibrium geometrics, frequencies of normal vibrations, and other values were found by the B3LYP/aug-cc-pvdz method, from which thermodynamic functions within the range of 0–6000 K were calculated. Equilibrium constants were calculated from these functions, and then the information on the rate constants in the limit of high pressures was obtained.  相似文献   

9.
CoAl2O4, CoGa2O4, and their solid solution Co(GazAl1−z)2O4 have been studied using high temperature oxide melt solution calorimetry in molten 2PbO·B2O3 at 973 K. There is an approximately linear correlation between lattice parameters, enthalpy of formation from oxides, and the Ga content. The experimental enthalpy of mixing is zero within experimental error. The cation distribution parameters are calculated using the O’Neill and Navrotsky thermodynamic model. The enthalpies of mixing calculated from these parameters are small and consistent with the calorimetric data. The entropies of mixing are calculated from site occupancies and compared to those for a random mixture of Ga and Al ions on octahedral site with all Co tetrahedral and for a completely random mixture of all cations on both sites. Despite a zero heat of mixing, the solid solution is not ideal in that activities do not obey Raoult's Law because of the more complex entropy of mixing.  相似文献   

10.
Two new mixed organic-inorganic uranyl molybdates, (C6H14N2)3[(UO2)5(MoO4)8](H2O)4 (1) and (C2H10N2)[(UO2)(MoO4)2] (2), have been obtained by hydrothermal methods. The structure of 1 [triclinic, , Z=1, a=11.8557(9), b=11.8702(9), c=12.6746(9) Å, α=96.734(2)°, β=91.107(2)°, γ=110.193(2)°, V=1659.1(2) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.058, which was calculated for the 5642 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl square bipyramids, uranyl pentagonal bipyramids, and MoO4 tetrahedra, with composition [(UO2)5(MoO4)8]6−, that are parallel to (−101). H2O groups and 1,4-diazabicyclo [2.2.2]-octane (DABCO) molecules are located in the interlayer, where they provide linkage of the sheets. The structure of 2 [triclinic, , Z=2, a=8.4004(4), b=11.2600(5), c=13.1239(6) Å, α=86.112(1)°, β=86.434(1)°, γ=76.544(1)°, V=1203.14(10) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.043, which was calculated for 5491 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl pentagonal bipyramids and MoO4 tetrahedra, with composition [(UO2)(MoO4)2]2−, that are parallel to (110). Ethylenediamine molecules are located in the interlayer, where they provide linkage of the sheets. All known topologies of uranyl molybdate sheets of corner-sharing U and Mo polyhedra can be described by their nodal representations (representations as graphs in which U and Mo polyhedra are given as black and white vertices, respectively). Each topology can be derived from a simple black-and-white graph of six-connected black vertices and three-connected white vertices by deleting some of its segments and white vertices.  相似文献   

11.
12.
A new hybrid organic-inorganic three-dimensional compound, [Co4(OH)2(H2O)2](C4H11N2)2[C6H2(CO2)4]2·3H2O 1, has been synthesized via hydrothermal reactions and characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and magnetic techniques. Compound 1 crystallizes in the monoclinic space group P21/n (no. 14) with a=6.3029(9) Å, b=16.413(2) Å, c=17.139(2) Å, β=98.630(2)°, V=1735.0(4) Å3, Z=2. Compound 1 contains tetranuclear Co4(μ3-OH)2(H2O)2 clusters that are inter-linked by pyromellitate bridging ligands into a three-dimensional structure containing one-dimensional tunnels along the a-axis with water and pendant monoprotonated piperazine molecules in the center. The variable temperature magnetic susceptibility was measured from 2 to 300 K at 5000 Oe showing a predominantly anti-ferromagnetic interaction in 1, and the field dependence of magnetization was measured at 2, 5, 15, and 20 K indicating the competition of magnetic interactions in the tetranuclear centers.  相似文献   

13.
The heats of immersion of hydrophobic, amorphous arsenic chalcogenides have been measured in several organic liquids. For hexane, butanol, butylchloride and nitropropane, the heats of immersion with As2S3, As2S5 and As2Se3 showed linear dependences on the dipole moment of the wetting liquid molecule. From the results the average values of the electrostatic field strength were calculated to be 0.29 × 105, 0.31 × 105, and 0.57 × 105 e.s.u. cm?2. The heats of immersional wetting of As2S3 and As2Se3 in n-alkanols linearly increased with an increase of n, the number of carbon atoms in CnH2n+1OH. The contributions due to polarization of the liquid molecule by the electrostatic field of the solid surface, due to the dispersion force and due to the interaction between the dipole moment of the liquid with the electrostatic field of the solid were calculated by applying the additivity of intermolecular forces. The result showed that the dispersion force was the dominant contribution to the interaction in As chalcogenides-n-alkanol systems.  相似文献   

14.
Colorless crystals of CsTh(MoO4)2Cl and Na4Th(WO4)4 have been synthesized at 993 K by the solid-state reactions of ThO2, MoO3, CsCl, and ThCl4 with Na2WO4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO4)2Cl is orthorhombic, consisting of two adjacent [Th(MoO4)2] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO4)2 and reformulated as Th(MoO4)2·CsCl. The Th atom coordinates to seven monodentate MoO4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na4Th(WO4)4 adopts a scheelite superlattice structure. The three-dimensional framework of Na4Th(WO4)4 is constructed from corner-sharing ThO8 square antiprisms and WO4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO4)2Cl, monoclinic, P21/c, Z=4, a=10.170(1) Å, b=10.030(1) Å, c=9.649(1) Å, β=95.671(2)°, V=979.5(2) Å3, R(F)=2.65% for I>2σ(I); Na4Th(WO4)4, tetragonal, I41/a, Z=4, a=11.437(1) Å, c=11.833(2) Å, V=1547.7(4) Å3, R(F)=3.02% for I>2σ(I).  相似文献   

15.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

16.
A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4]·4[H2O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) Å, b=8.8608(8) Å, c=13.2224(11) Å, α=80.830(6)°, β=74.965(5)°, γ=78.782(6)°, Z=2, R1[I>2σ(I)]=0.0511 and wR2(all data)=0.1423. The alternation of AlO4 tetrahedra and PO4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO6, and bridging the adjacent AlO6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions.  相似文献   

17.
C2(a 3πu) disappearance rate constants of 1.44, 0.96, 0.0296, 0.0130 and < 10?6(x10?10cm3s?1) are reported for reactions with C2H4, C2H2, O2, C2H6, and CH4, respectively at 298 K. C2(a 3πu) fragments are generated by multiphoton ArF excimer laser photodissociation at C2H2, and monitored by dye laser induced fluorescence. Arguments are presented which favor chemical reactions over the C2(a 3πu) → (X 1σ+g) quenching channel. C2 + C2H2 represents the one possible exception to the reactive channel.  相似文献   

18.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

19.
A new V(III) lithium phosphate Li5VO(PO4)2 has been synthesized by electrochemical insertion of lithium into Li4VO(PO4)2. This phase, which crystallizes in the space group I4/mcm, exhibits a tunnel structure closely related to the layered structure of Li4VO(PO4)2 and to the tunnel structure of VO(H2PO4)2. The topotactic reactions that take place during lithium exchange and intercalation, starting from VO(H2PO4)2 and going to the final phase Li5VO(PO4)2 are explained on the basis of the flexible coordinations of V4+ and V3+ species. The electrochemical and magnetic properties of this new phase are also presented and explained on the basis of the structure dimensionality.  相似文献   

20.
Mn3+ ion (3d4, t32geg1) is liable to induce, by a cooperative Jahn-Teller effect, a macroscopic distortion of the cubic spinel structure; it is so in haussmanite Mn3O4, a tetragonal structure. The effect of chemical composition on “tetragonal-cubic” spinel transformations in the system Mn3O4Mn2SnO4 has been studied by X-ray diffraction; the c and a′ unit-cell dimensions show an abrupt change at a critical composition beyond which the system has the cubic spinel structure. The cation distribution has been worked out from an analysis of the X-ray diffraction intensities, and a correlation between the number of Mn3+ ions in octahedral sites and the degree of distortion has been obtained; the values of “cation-anion” bond distances, in six coordination, show that, in this system, the oxygen octahedral distortion and the macroscopic cell distortion are in a direct relationship. The paramagnetic study always attributes the “high-spin” configuration t32geg1 to manganese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号