首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A Picker flow calorimeter was used to obtain excess heat capacities at 298.15 K for mixtures of tetrachloromethane + toluene, + each of the three xylenes, + ethylbenzene, + mesitylene, and + chlorobenzene. The excess heat capacities are positive in all cases, with the exception of tetrachloromethane + mesitylene. Comparison of the results with values calculated from a “regular associated solution” model supports the view that complex formation occurs in these mixtures.  相似文献   

3.
The heat capacities and densities of mixtures of aqueous solutions of normal alcohols (methanol to n-butanol) and t-butanol were measured at 298.15 K at low molalities. The results were used to calculate the thermodynamic pair and triplet interaction parameters between solutes for heat capacities and volumes. The pair parameters are approximately a linear function of the total number of carbon atoms of the two solutes. The enthalpic pair and triplet interaction parameters for (ROH + H2O) are also reported. The temperature dependence of the pair parameters for Gibbs free energies, enthalpies, entropies, heat capacities, and volumes are discussed in terms of structural changes in the aqueous solutions.  相似文献   

4.
A Picker flow microcalorimeter was used to determine molar excess heat capacities CPE at 298.15 K for mixtures of carbon tetrachloride + n-heptane, n-nonane, and n-decane. The excess heat capacities are negative in all cases. The absolute value |CPE| increases with increasing chain length of the alkane. A formal interchange parameter, cP12, is calculated and its dependence on n-alkane chain length is discussed briefly in terms of molecular orientations.  相似文献   

5.
Molar excess heat capacities at constant pressure, CEp, of binary liquid mixtures chloroform + oxolane, chloroform + 1,3-dioxolane, chloroform + oxane, and chloroform + 1,4-dioxane have been determined at 298.15 K from measurements of volumetric heat capacities in a Picker flow microcalorimeter. A precision of ±0.04 J K?1 mole? was achieved by using the stepwise procedure. Experimental molar excess heat capacities are compared with values derived from HE results at different temperatures. Excess molar volumes, VE, for the same systems at 298.15 K have been determined by measuring the density of the pure liquids and solutions with a high-precision digital flow densimeter.  相似文献   

6.
7.
《Thermochimica Acta》1986,109(1):145-154
Excess isobaric heat capacities for water + methanol, + ethanol, + 1-propanol and + 1-butanol mixtures were measured at 298.15 K. The apparatus used in this study was a flow microcalorimeter designed and constructed in our laboratory recently, which can determine excess heat capacities directly by a method different from that of a Picker type calorimeter.The results obtained are roughly in agreement with the literature values, except for the water + 1-propanol mixture. This discrepancy from the literature values may arise from the thermodynamic instability of the water + alkanol mixture with the long-chain alkyl group and the difference in the procedure for obtaining the excess heat capacity.  相似文献   

8.
Measurements of volumetric heat capacities at constant pressure, Cp/V (V being the molar volume), at 298.15 K, of the binary liquid mixtures 1,1,1-trichloroethane + oxolane, +1,3-dioxolane, +oxane, +1,3-dioxane, and +1,4-dioxane were carried out in a Picker-type flow microcalorimeter. Molar heat capacities at constant pressure. Cp, and molar excess heat capacities, CEp, were calculated from these results as a function of the mole fraction. CEp values for these systems are positive and the magnitude depends on the size of the cycle and on the relative position of the oxygen atoms in the cyclic diethers. The precision and accuracy for CEp are estimated as better than 2%. Molar excess volumes, VE, for the same systems, at 298.15 K, have been determined from density measurements with a high-precision digital flow densimeter. The experimental results of VE and CEp, are interpreted in terms of molecular interactions.  相似文献   

9.
The preferential solvation parameters of methocarbamol in dioxane + water, ethanol + water, methanol + water and propylene glycol + water mixtures are derived from their thermodynamic properties by using the inverse Kirkwood–Buff integrals (IKBI) method. This drug is sensitive to solvation effects, being the preferential solvation parameter δx1,3, negative in water-rich and co-solvent-rich mixtures, but positive in mixtures with similar proportions of solvents, except in methanol + water mixtures, where positive values are found in all the methanol-rich mixtures. It is conjecturable that the hydrophobic hydration around the non-polar groups in water-rich mixtures plays a relevant role. Otherwise, in mixtures of similar solvent compositions, the drug is mainly solvated by co-solvent, probably due to the basic behaviour of the co-solvents; whereas, in co-solvent-rich mixtures, the preferential solvation by water could be due to the acidic behaviour of water. Nevertheless, the specific solute–solvent interactions present in the different binary systems remain unclear.  相似文献   

10.
Excess enthalpies and excess isobaric heat capacities of binary mixtures consisting of acetonitrile, dimethylformamide and benzene were measured at 298.15 K. Excess enthalpy of acetonitrile + benzene is positive and that of acetonitrile + dimethylformamide is negative. That of dimethylformamide + benzene is positive and nearly equals to zero as shown in the previous report [1]. Excess heat capacities of acetonitrile + benzene and benzene + dimethylformamide change sign from negative to positive with increase of benzene. That of acetonitrile + dimethylformamide is not simple. It is slightly positive near both ends of mole fraction and not so large negative in the middle of mole fraction. The curve tends to flatten in that region.
Zusammenfassung An binären Gemischen aus Acetonitril, Dimethylformamid und Benzol wurden bei 298.15 K die Überschußenthalpien und die isobaren Überschußwärmekapazitäten gemessen. Die Überschußenthalpie von Acetonitril + Benzol ist positiv, die von Acetonitril + Dimethylformamid ist negativ. Die Überschußenthalpie ist bei Dimethylformamid positiv und wie bereits berichtet [1] annähernd Null. Die Überschußwärmekapazität von Acetonitril + Benzol und Benzol + Dimethylformamid wechselt bei Zunahme von Benzol das Vorzeichen von negativ zu positiv. Die von Acetonitril + Dimethylformamid ist nicht einfach. An beiden Enden der Molenbruchskaie ist sie leicht positiv und nicht allzu negativ in der Mitte der Molenbruchskale. Die Kurve flacht in dieser Region ab.
  相似文献   

11.
Volumetric heat capacities were measured for binary mixtures of n-heptane with n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, and 2,3-dimethylbutane at 298.15 K in a Picker flow microcalorimeter. The results were combined with previously published excess molar volumes to obtain excess molar isobaric heat capacities. Use of the Flory theory of mixtures to interpret the latter is discussed.  相似文献   

12.
《Fluid Phase Equilibria》1986,25(2):195-208
Awwad, A.M. and Salman, M.A., 1986. Excess molar volumes and viscosities of binary mixtures of cyclohexane and n-alkane at 298.15 K. Fluid Phase Equilibria, 25: 195-208.Excess molar volumes, viscosities, excess molar viscosities, and excess molar activation energies of viscous flow were determined for binary mixtures of cyclohexane + n-pentane, + n-hexane, + n-heptane, + n-octane, + n-nonane, + n-decane, + n-dodecane, + n-tetradecane and + n-hexadecane at 298.15 K. The effect of orientational order of n-alkane on solution molar volumes and viscosities is investigated as well as the adequacy of the Flory theory and free volume theories used to predict solution molar volumes and viscosities. For longer n-alkanes VE, ηE and ΔG*E are positive and associated with the orientational order.  相似文献   

13.
The densities ρ, speeds of sound u, and viscosities η, of pure 1-butanol, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, trichloroethylene, and tetrachloroethylene and those of their binary mixtures have been measured at 298.15 K and atmospheric pressure over the entire range of compositions. Excess molar volumes V E, viscosity deviations Δη, deviation in compressibilities Δκs and excess Gibbs energy of activation G*E, were obtained from the experimental results and those were fitted to Redlich–Kister's type function in terms of mole fractions. Viscosities, speeds of sound and isentropic compressibilities of the binary mixtures have been correlated by means of several empirical and semi-empirical equations. The experimental data are analysed to discuss the nature and strength of intermolecular interactions in these mixtures.  相似文献   

14.
We have determined the excess molar enthalpies H m E at 298.15 K and normal atmospheric pressure for the binary mixtures containing tert-butyl methyl ether (MTBE)+(methanol, ethanol, 1-propanol, 1-pentanol) using a Calvet microcalorimeter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Excess molar enthalpies, measured at 298.15 K in a flow microcalorimeter, are reported for the five binary systems formed by mixing n-octane with n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane. The results for equimolar mixtures, together with similar data for other n-alkane + hexane isomer mixtures, are correlated in terms of the acentric factors of the n-alkanes.  相似文献   

16.
Excess molar volumes (V m E ) and viscosities (η) of the binary mixtures of 1,2-diethoxyethane with di-, tri- and tetrachloromethane have been measured at 298-15 K and atmospheric pressure over the entire mole fraction range. The deviations in viscosities (δlnη) and excess energies of activation (δG*E) for viscous flow have been calculated from the experimental data. The Prigogine-Flory-Patterson (PFP) model has been used to calculateV m E , and the results have been compared with experimental data. The Bloomfield and Dewan model has been used to calculate viscosity coefficients and these have also been compared with experimental data for the three mixtures. The results have been discussed in terms of dipole-dipole interactions between 1,2-diethoxyethane and chloroalkanes and their magnitudes decreasing with the dipole character of the molecules. A short comparative study with results for mixtures with polyethers and chloroalkanes is also described.  相似文献   

17.
Measurements of excess molar enthalpies at the temperature 298.15 K in a flow microcalorimeter are reported for the five binary mixtures formed by mixing 1-hexene with the branched alkanes: 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, and 2,2,4-trimethylpentane. Smooth Redlich–Kister representations of the results are described. It was found that the Liebermann–Fried model also provided good representations of the results.  相似文献   

18.
《Colloids and Surfaces》1989,23(3):231-240
Densities and surface tensions of 2-propanol+dichloromethane and n-pentane+methylacetate mixtures were determined over the whole composition range at 298.15 K, by the maximum bubble pressure method. Positive excess surface tensions were observed in the first mixture and negative excess surface tensions were observed in the second mixture. Different equations existing in the literature were applied and calculated values were compared with the experimental ones. Hoar and Melford's equations were the best.  相似文献   

19.
用LKB2277 BioActivity Monitor测定了298.15K时, 乙酸、氯乙酸、溴乙酸和碘乙酸在水-DMF(N, N-二甲基甲酰胺)混合溶剂中的标准电离焓, 计算了相应体系的标准电离熵。用溶质和溶剂相互作用的观点讨论了实验结果。  相似文献   

20.
The molar excess enthalpies of 1,2- and 1,3-propanediamine + 1- or 2-propanol and 1,2- and 1,3-propanediol + 1- or 2-propaneamine have been determined at 298.15 K using a twin-microcalorimeter for a series of runs over the whole range of mole fractions. All excess enthalpies were large exothermic, in particular, the systems of amines + propanediols were more than −5 kJ mol−1 at the minimum. Primary or secondary alcohols and amines showed systematically different enthalpic behaviors. Equilibrium constant K1 expressed in terms of mole fractions and standard enthalpy of the formation of a 1:1 complex have been evaluated by ideal mixtures of momomeric molecules and their associated complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号