首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Thin layer chromatography on silica gel high performance layers and automated multiple development was used to separate the polar aromatic flavor compounds vanillin, ethyl vanillin, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-hydroxybenzyl alcohol, vanillic acid, coumarin, piperonal, anisic acid, and anisaldehyde commonly found in extracts of natural and artificial vanilla flavors. The ratio of 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde and vanillic acid to vanillin in natural vanilla extracts was used to confirm the authenticity of extracts purchased in the United States of America and the United Kingdom. Natural vanilla extracts purchased in Mexico and Puerto Rico were identified as counterfeit products based on changes in the above ratio and the presence of synthetic flavor compounds such as ethyl vanillin and coumarin. It is also demonstrated that the proposed method is suitable for the determination of natural and synthetic vanilla flavors in solvent extracts from food, beverage and confectionery products. The main advantage of thin layer chromatography for the analysis of vanilla extracts and food stuffs flavored with vanilla is its high sample throughput since sample preparation requirements are minimal and multiple samples can be separated simultaneously.  相似文献   

2.
A high-performance liquid chromatographic procedure was developed for the isolation and quantitation of coumarin from vanilla-based liquid flavorings of Mexican origin. Forty products representing fourteen different Mexican brands were assayed for coumarin, vanillin, and ethyl vanillin by the proposed method. The procedure has been adapted to the analysis of other products including domestic vanilla extracts and imitation vanilla flavorings for vanillin, ethyl vanillin, 4-hydroxybenzaldehyde and piperonal. Chromatographic retention data for thirty-seven compounds associated with vanillin and vanilla products employing two mobile phase systems are presented.  相似文献   

3.
A method is described for determining coumarin, vanillin, and ethyl vanillin in vanilla extract products. A product is diluted one-thousand-fold and then analyzed by reversed-phase liquid chromatography using a C18 column and a mobile phase consisting of 55% acetonitrile-45% aqueous acetic acid (1%) solution at a flow rate of 1.0 mL/min. Peaks are detected with a UV detector set at 275 nm. Vanilla extracts were spiked with 250, 500, and 1000 microg/g each of coumarin, vanillin, and ethyl vanillin. Recoveries averaged 97.4, 97.8, and 99.8% for coumarin, vanillin, and ethyl vanillin, respectively, with coefficient of variation values of 1.8, 1.3, and 1.3%, respectively. No significant difference was observed among the 3 spiking levels. A survey of 23 domestic and imported vanilla extract products was conducted using the method. None of the samples contained coumarin. The surveyed samples contained between 0.4 to 13.1 and 0.4 to 2.2 mg/g vanillin and ethyl vanillin, respectively.  相似文献   

4.
A simple and fast method was developed using RP-HPLC for separation and quantitative determination of vanillin and related phenolic compounds in ethanolic extract of pods of Vanilla planifolia. Ten phenolic compounds, namely 4-hydroxybenzyl alcohol, vanillyl alcohol, 3,4-dihydroxybenzaldehyde, 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and piperonal were quantitatively determined using ACN, methanol, and 0.2% acetic acid in water as a mobile phase with a gradient elution mode. The method showed good linearity, high precision, and good recovery of compounds of interest. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.  相似文献   

5.
A rapid and sensitive technique for frauds determination in vanilla flavors was developed. The method comprises separation by liquid chromatography followed by an electrochemical detection using a homemade screen-printed carbon electrode modified with aluminium-doped zirconia nanoparticles (Al-ZrO2-NPs/SPCE). The prepared nanomaterials (Al-ZrO2-NPs) were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). This method allows for the determination of six phenolic compounds of vanilla flavors, namely, vanillin, p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillyl alcohol, vanillic acid and ethyl vanillin in a linear range between 0.5 and 25 µg g−1, with relative standard deviation values from 2.89 to 4.76%. Meanwhile, the limits of detection and quantification were in the range of 0.10 to 0.14 µg g−1 and 0.33 to 0.48 µg g−1, respectively. In addition, the Al-ZrO2-NPs/SPCE method displayed a good reproducibility, high sensitivity, and good selectivity towards the determination of the vanilla phenolic compounds, making it suitable for the determination of vanilla phenolic compounds in vanilla real extracts products.  相似文献   

6.
A disposable electrochemical sensor was developed for the detection of vanillin in vanilla extracts and in commercial products. An analytical procedure based on square-wave voltammetry (SWV) was optimised and a detection limit of 0.4 μM for vanillin was found. A relative standard deviation of 2% was calculated for a vanillin concentration of 100 μM. The method was applied to the determination of vanillin in natural concentrated vanilla extracts and in final products such as yoghurt and compote. The obtained results were compared with those provided by a reference method based on HPLC. The electrochemical behaviour of other compounds (vanillic acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, etc.), generally present in natural oleoresins, were also studied, to check for interferences with respect to the vanillin voltammetric signal.  相似文献   

7.
A simple, fast and sensitive RP-HPTLC method is developed for simultaneous quantitative determination of vanillin and related phenolic compounds in ethanolic extracts of Vanilla planifolia pods. In addition to this, the applicability of accelerated solvent extraction (ASE) as an alternative to microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and Soxhlet extraction was also explored for the rapid extraction of phenolic compounds in vanilla pods. Good separation was achieved on aluminium plates precoated with silica gel RP-18 F(254S) in the mobile phase of methanol/water/isopropanol/acetic acid (30:65:2:3, by volume). The method showed good linearity, high precision and good recovery of compounds of interest. ASE showed good extraction efficiency in less time as compared to other techniques for all the phenolic compounds. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.  相似文献   

8.
建立了高效液相色谱–四极杆飞行时间串联质谱快速检测饮料中糖精钠、甜蜜素、安赛蜜、阿斯巴甜、纽甜、三氯蔗糖6种人工合成甜味剂的方法。样品经水提取,采用C18色谱柱,以甲醇和0.1%甲酸–10 mmol/L甲酸铵溶液为流动相,梯度洗脱,四极杆飞行时间串联质谱电喷雾负离子模式检测。各化合物在0.02~2.0 mg/L范围内均呈现良好的线性关系,相关系数均大于0.998。样品平均添加回收率为63.0%~113.2%,测定结果的相对标准偏差均小于9.6%(n=5)。该方法简便快捷,选择性好,灵敏度高,可满足国内外现行法规的限量要求。  相似文献   

9.
A LC-MS method was developed for the determination of coumarin, vanillin, and ethyl vanillin in vanilla products. Samples were analyzed using LC-electrospray ionization (ESI)-MS in the positive ionization mode. Limits of detection for the method ranged from 0.051 to 0.073 microg mL(-1). Using the optimized method, 24 vanilla products were analyzed. All samples tested negative for coumarin. Concentrations ranged from 0.38 to 8.59 mg mL(-1) (x =3.73) for vanillin and 0.33 to 2.27 mg mL(-1) (x =1.03) for ethyl vanillin. The measured concentrations are compared to values calculated using UV monitoring and to results reported in a similar survey in 1988. Analytical results, method precision, and accuracy data are presented.  相似文献   

10.
Vanillin is responsible for producing the familiar smell of vanilla. Vanillin has many similarities with other flavor phenolic compounds and could potentially show similar pharmacological activity. A previously published analytical method was adapted, developed and tested. Vanillin was extracted from rat plasma using protein precipitation with acetone. Prior to LC-ESI/MS/MS analysis, an aliquot of the supernatant was used to proceed to the derivatization of vanillin and the internal standard with dansyl chloride to enhance signal intensity in positive electrospray mode. The chromatography was performed on a 100 x 2.1 mm C8 column and an isocratic mobile phase composed of 75:25 acetonitrile:0.5% formic acid in water with a flow rate fixed at 500 microL/min. A linear (weighted 1/concentration) relationship was used to perform the calibration over an analytical range of 10-10,000 ng/mL. The intra-batch precision and accuracy at the limit of quantitation (10 ng/mL), medium (500 ng/mL) and high (10,000 ng/mL) concentrations were 10.7, 7.0 and 7.2% and 103.5, 108.0 and 100.1%, respectively. The observed recovery was greater than 87% and no significant ionization suppression or matrix effect was observed. This LC-ESI/MS/MS method for the determination of vanillin in rat plasma provided results within generally accepted criteria used for bioanalytical assay.  相似文献   

11.
反相高效液相色谱法定量分析木质素的主要降解产物   总被引:3,自引:0,他引:3  
建立了反相高效液相色谱定量分析玉米秸秆蒸汽爆破预处理过程中产生的主要木质素降解产物的方法。采用C18色谱柱,柱温30 ℃,乙腈-水(含1.5%的醋酸)为流动相,梯度洗脱,流速为0.8 mL/min, 254 nm和280 nm波长下紫外检测,可实现4-羟基苯甲酸、香草酸、紫丁香酸、4-羟基苯甲醛、香草醛和紫丁香醛的有效分离。6种主要木质素降解产物线性回归方程相关系数为0.9999~1.0000,加标回收率均在96%以上,相对标准偏差低于2.5%(n=6),满足定量分析要求。  相似文献   

12.
An efficient ultra high performance liquid chromatography method of separation was developed for the analysis of six important methoxyphenol derivatives involved in the eugenol catabolic pathway. In the present study, an Acquity UPLC BEH C18 column was used for the chromatographic separation of the industrially important phenolic compounds such as vanillin, vanillic acid, ferulic acid, coniferyl alcohol, and coniferyl aldehyde obtained during microbial transformation of eugenol. Eluted components were identified using the dual wavelength (254 and 310 nm) UV detector. A gradient method of elution using mobile phase of aqueous 1 mM trifluoroacetic acid (Solvent A) and methanol (Solvent B) at a flow rate of 0.3 mL/min separated all the five intermediate methoxyphenol derivatives along with their precursor eugenol within 15 min with stable baseline resolution. Method validation was performed for the accurate quantification of vanillin, coniferyl aldehyde, and eugenol using the parameters of linearity, specificity, precision, limit of detection, limit of quantification, and robustness. The developed method would be helpful for clear separation and identification of the five most important intermediate metabolites of the eugenol catabolism pathway.  相似文献   

13.
The normal phase HPLC behavior of a bare zirconia column was studied at temperatures up to 200 °C using a hexane mobile phase. The use of elevated column temperatures significantly decreased the retention of twenty five aromatic model compounds according to the van't Hoff equation (>30-fold decrease for some compounds). Large improvements in peak shape, efficiency (>2.2-fold), aromatic group-type selectivity, and column re-equilibration times (>5-fold) were obtained at elevated temperatures. The thermal decomposition of two polar nitrogen compounds (indole and carbazole) was observed in a hexane/dichloromethane mobile phase at temperatures greater than 100 °C. The first order decomposition of carbazole was studied in further detail.  相似文献   

14.
A commercially available and disposable multiwalled carbon nanotube screen‐printed electrode (CNT‐SPE) was employed to detect and determine vanillin compounds in natural vanilla. The voltammetric behaviour of vanillin at the CNT‐SPE is examined and shown to be a sensitive method for quantifying vanillin. Linear calibration for vanillin in the range of 2.5–750 μM was obtained with a detection limit of 1.03 μM and a quantification limit of 3.44 μM. The developed method comprises a simple sample preparation method and a sensitive electrochemical detection for the quantification of vanillin in vanilla pods and is an easy and simple procedure for manufacturers and consumers.  相似文献   

15.
高效液相色谱法同时测定香兰素与邻位香兰素   总被引:2,自引:0,他引:2  
建立了同时测定香兰素和邻位香兰素的高效液相色谱法.考察了流动相组成、柱温等因素对分析效率的影响.在流动相为5% 乙酸-乙腈(60 :40,体积比),流速1.0 mL/min,柱温25 ℃的优化条件下,香兰素和邻位香兰素可在5 min内实现分离.测定结果表明,香兰素和邻位香兰素在10 ~240 mg/L范围内线性关系良好...  相似文献   

16.
唐维英  黄泽玮  钱广生  魏宇涛  黄瑛  徐小平  余晓琴 《色谱》2018,36(12):1245-1260
建立了超高效液相色谱-串联质谱(UPLC-MS/MS)同时测定茶叶、代用茶和饮料食品中63种非法添加化合物的分析方法。样品经甲醇超声提取后,采用Thermo Acclaim RSLC C18色谱柱(100 mm×2.1 mm,2.2 μm)分离,以5 mmol/L甲酸铵溶液(含体积分数为0.1%的甲酸)-0.1%(体积分数)甲酸乙腈为流动相进行梯度洗脱。在电喷雾离子源正离子模式下,采用动态多反应监测(dMRM)方式测定,外标法定量。63种待测化合物在相应的线性范围内呈良好的线性关系,相关系数(R2)均大于0.99;定量限为0.10~2.50mg/kg;在3个添加水平下,63种待测物的平均回收率为62.4%~129.4%,进样精密度和重复性的相对标准偏差为0.3%~9.6%(n=6)。该方法简便快捷、准确可靠,适用于茶叶、代用茶和饮料食品中非法添加具有解热镇痛效果的化合物检测。  相似文献   

17.
A new method to quick extraction of vanillin and p-hydroxybenzaldheyde (PHB) of vanilla beans from vanilla fragans is proposed. Samples were irradiated with microwaves energy to accelerate the extraction process and photometric monitoring was performed at 348 and 329 nm (vanillin and PHB, respectively). The simultaneous determination of vanillin and PHB from extracts was performed using the Vierordt's method, which showed a precision, expressed as relative standard deviation, smaller 2.5% for both analytes. Conditions such as microwaves irradiation power, number of irradiation and non-irradiation cycles, irradiation time and ethanol concentration were optimized by means of multivariate screening that showed that irradiation power and number of irradiation cycles are the most significant condition in the vanilla extraction process. The focused microwave-assisted extraction (FMAE) was applied to commercial (dried vanilla beans from fresh green vanilla beans), lyophilised and dried (commercial vanilla dried at 135 °C in oven) vanilla beans samples. The results showed that the extraction of vanillin and PHB in the commercial vanilla samples were higher than in dried and lyophilised samples. With the proposed FMAE a decrease in the extraction time of 62 times and an increase in the vanillin and PHB concentrations between 40 and 50% with respect to the official Mexican extraction method, were obtained.  相似文献   

18.
Corn (Zea mays) stalk and poplar (Populus deltoides) wood lignin was converted into monomeric aromatic compounds and short chain aliphatic carboxylic acids. The main reaction products were separated and identified using capillary gas chromatography-mass spectrometry on an HP-5 column. The compounds were considered as positively identified when their mass spectra and GC retention times agreed with those of authentic standard samples. The quantitative estimation of the identified reaction products was accomplished on an OV-101 capillary column by gas chromatography-FID using the internal standard method. Among the aromatic compounds, aldehydes (p-hydroxybenzaldehyde, vanillin, and syringaldehyde), acids (p-hydroxybenzoic, vanillic, 3,4-dihydroxybenzoic, and syringic), and one phenol (hydroquinone) were determined. In addition, the aliphatic carboxylic acids: glycolic, oxalic, malonic, glyoxylic, butanedioic, glyceric, and malic acid were identified. All the calibration curves of the quantified compounds approximated to a straight line. For both corn stalk and poplar wood lignins, the major components were the aromatic aldehydes (71 and 64% of the characterized fraction, respectively), followed by the aliphatic carboxylic acids (20 and 21% of the characterized fraction, respectively).  相似文献   

19.
《Analytical letters》2012,45(12):1724-1735
A simple and reliable HPLC method for the determination of benzoic acid and vanillin in food samples has been developed, in which a pure titania monolithic column synthesized through a template-free sol-gel synthesis route was used as chromatography column. To fully understand the retention mechanism of benzoic acid and vanillin on titania, acetonitrile (ACN) percentage, buffer concentration, and buffer pH of the mobile phase were investigated. The retention mechanism of benzoic acid and vanillin on the titania monolith column belongs to hydrophilic interaction and ligand exchange. When the high %ACN and appropriate acetate existed in eluent, the hydrophilic interaction was the dominant retention mode. Benzoic acid and vanillin in preserved fruit and jelly samples were successfully determined and quantitative analysis was carried out by external standard method with correlation coefficient (R 2 ) of 0.9994 for benzoic acid and 0.9989 for vanillin. The relative standard deviations (RSDs) of benzoic acid and vanillin were 0.94% and 1.50%, respectively. The developed titania-based HPLC method is simple, rapid, accurate, and competent for the separation of polar and hydrophilic compounds, and this work has also promoted the application of titania monolith in chromatographic separation.  相似文献   

20.
Five vanilla-related flavors of food significance, vanillic alcohol (VOH), ethyl maltol (EMA), maltol (MAL), ethyl vanillin (EVA) and vanillin (VAN), were separated using CE microchips with electrochemical detection (CE-ED microchips). A +2 kV driving voltage for both injection and separation operation steps, using a borate buffer (pH 9.5, 20 mM) and 1 M nitric acid in the detection reservoir allowed the selective and sensitive detection of the target analytes in less than 200 s with reproducible control of EOF (RSD(migration times)<3%). The analysis in selected real vanilla samples was focusing on VAN and EVA because VAN is a basic fragrance compound of the vanilla aroma, whereas EVA is an unequivocal proof of adulteration of vanilla flavors. Fast detection of all relevant flavors (200 s) with an acceptable resolution (R(s) >1.5) and a high accuracy (recoveries higher than 90%) were obtained with independence of the matrices and samples examined. These results showed the reliability of the method and the potential use of CE microchips in the food control field for fraudulent purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号