首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high‐surface‐area hierarchically porous N‐doped carbon microflowers, which were assembled from porous nanosheets by a three‐step route: soft‐template‐assisted self‐assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure‐directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N‐doped carbon microflowers (A‐NCF‐4) have a hierarchically porous structure, high specific surface area (2309 m2 g?1), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm3 g?1). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g?1 were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.  相似文献   

2.
《化学:亚洲杂志》2017,12(3):283-288
The capture and storage of CO2 have been suggested as an effective strategy to reduce the global emissions of greenhouse gases. Hence, in recent years, many studies have been carried out to develop highly efficient materials for capturing CO2. Until today, different types of porous materials, such as zeolites, porous carbons, N/B‐doped porous carbons or metal‐organic frameworks (MOFs), have been studied for CO2 capture. Herein, the CO2 capture performance of new hybrid materials, graphene‐organic frameworks (GOFs) is described. The GOFs were synthesized under mild conditions through a solvothermal process using graphene oxide (GO) as a starting material and benzene 1,4‐diboronic acid as an organic linker. Interestingly, the obtained GOF shows a high surface area (506 m2 g−1) which is around 11 times higher than that of GO (46 m2 g−1), indicating that the organic modification on the GO surface is an effective way of preparing a porous structure using GO. Our synthetic approach is quite simple, facile, and fast, compared with many other approaches reported previously. The synthesized GOF exhibits a very large CO2 capacity of 4.95 mmol g−1 at 298 K (1 bar), which is higher those of other porous materials or carbon‐based materials, along with an excellent CO2/N2 selectivity of 48.8.  相似文献   

3.
For the first time, toxic bio-tars collected from the gasification of pine sawdust are used as the precursor for activated carbons. Various types of activation agents including KOH, K2CO3, H3PO4 and ZnCl2 were screened for obtaining superior activated carbons. When KOH was used as an activation agent, the obtained activated carbons exhibited high specific surface area and large mesopore volume. The activated carbons were further employed to be the electrode material of supercapacitors, and its specific capacitance reached up to 260 F g?1 at 0.25 A g?1 current density. Also, it showed an excellent rate performance from preserving a relatively high specific capacitance of 151 F g?1 at 50 A g?1. The assembled device also exhibited the good electrochemical stability with the capacity retention of 90% after 5000 cycles. Furthermore, the maximum energy density of the activated carbons in organic electrolyte reached 17.8 Wh kg?1.  相似文献   

4.
Immersion enthalpies of activated carbon samples obtained by activation with steam at temperatures between 600 and 900 °C and activation times between 1 and 10 h were determined. The calorimetric liquids of immersion are CCl4, water, NaOH, and HCl 2 M solutions, and the values of the immersion enthalpies are related to other properties of the activated carbons such as the surface area B.E.T., the micropore volume, the content of acid, and basic surface groups. The highest values for the immersion enthalpies take place for the polar solvent CCl4 and for HCl solution, with values between 4.0 and 75.2 J g−1 and 9.15 and 48.3 J g−1, respectively.  相似文献   

5.
The synthesis of two‐dimensional (2D) polymer nanosheets with a well‐defined microporous structure remains challenging in materials science. Here, a new kind of 2D microporous carbonaceous polymer nanosheets was synthesized through polymerization of a very low concentration of 1,4‐dicyanobenzene in molten zinc chloride at 400–500 °C. This type of nanosheets has a thickness in the range of 3–20 nm, well‐defined microporosity, a high surface area (~537 m2 g?1), and a large micropore volume (~0.45 cm3 g?1). The microporous carbonaceous polymer nanosheets exhibit superior CO2 sorption capability (8.14 wt % at 298 K and 1 bar) and a relatively high CO2 selectivity toward N2 (25.6). Starting from different aromatic nitrile monomers, a variety of 2D carbonaceous polymer nanosheets can be obtained showing a certain universality of the ionothermal method reported herein.  相似文献   

6.
Highly porous activated carbons were synthesized via the mechanochemical salt-templating method using both sustainable precursors and sustainable chemical activators. Tannic acid is a polyphenolic compound derived from biomass, which, together with urea, can serve as a low-cost, environmentally friendly precursor for the preparation of efficient N-doped carbons. The use of various organic and inorganic salts as activating agents afforded carbons with diverse structural and physicochemical characteristics, e.g., their specific surface areas ranged from 1190 m2·g−1 to 3060 m2·g−1. Coupling the salt-templating method and chemical activation with potassium oxalate appeared to be an efficient strategy for the synthesis of a highly porous carbon with a specific surface area of 3060 m2·g−1, a large total pore volume of 3.07 cm3·g−1 and high H2 and CO2 adsorption capacities of 13.2 mmol·g−1 at −196 °C and 4.7 mmol·g−1 at 0 °C, respectively. The most microporous carbon from the series exhibited a CO2 uptake capacity as high as 6.4 mmol·g−1 at 1 bar and 0 °C. Moreover, these samples showed exceptionally high thermal stability. Such activated carbons obtained from readily available sustainable precursors and activators are attractive for several applications in adsorption and catalysis.  相似文献   

7.

The efficiency of activated carbons prepared from corncob, to remove asphaltenes from toluene modeled solutions, has been studied in this work. The activating agent effect over carbonaceous solid preparation , and also temperature effect on the asphaltenes adsorption on the prepared activated carbons, was studied. The asphaltene adsorption isotherms were determined, and the experimental data were analyzed applying the Langmuir, Freundlich, Redlich–Peterson, Toth and Radke–Prausnitz and Sips models. Redlich–Peterson model described the asphaltenes isotherm on the activated carbons better. The asphaltenes adsorption capacities at 25° for activated carbons were: 1305 mg g?1, 1654 mg g?1 and 559.1 mg g?1 for GACKOH, GACKP and GACH3PO4, respectively. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated from the adsorption isotherms in asphaltene solutions from toluene solutions, and it was found that the adsorption process was spontaneous and exothermic in nature. Kinetic parameters, reaction rate constant and equilibrium adsorption capacities were evaluated and correlated for each kinetic model. The results show that asphaltene adsorption is described by pseudo-second-order kinetics, suggesting that the adsorption process is chemisorption. The adsorption calorimetry was used to analyze the type of interaction between the asphaltenes and the activated carbons prepared in this work, and their values were compared with the enthalpic values obtained from the Clausius–Clapeyron equation.

  相似文献   

8.
Designing of porous carbon system for CO2 uptake has attracted a plenty of interest due to the ever-increasing concerns about climate change and global warming. Herein, a novel N rich porous carbon is prepared by in-situ chemical oxidation polyaniline (PANI) on a surface of multi-walled carbon nanotubes (MWCNTs), and then activated with KOH. The porosity of such carbon materials can be tuned by rational introduction of MWCNTs, adjusting the amount of KOH, and controlling the pyrolysis temperature. The obtained M/P-0.1-600-2 adsorbent possesses a high surface area of 1017 m2 g−1 and a high N content of 3.11 at%. Such M/P-0.1-600-2 adsorbent delivers an enhanced CO2 capture capability of 2.63 mmol g−1 at 298.15 K and five bars, which is 14 times higher than that of pristine MWCNTs (0.18 mmol g−1). In addition, such M/P-0.1-600-2 adsorbent performs with a good stability, with almost no decay in a successive five adsorption-desorption cycles.  相似文献   

9.
CO2 adsorption in porous carbon materials has attracted great interests for alleviating emission of post-combustion CO2. In this work, a novel nitrogen-doped porous carbon material was fabricated by carbonizing the precursor of melamine-resorcinol-formaldehyde resin/graphene oxide (MR/GO) composites with KOH as the activation agent. Detailed characterization results revealed that the fabricated MR(0.25)/GO-500 porous carbon (0.25 represented the amount of GO added in wt.% and 500 denoted activation temperature in °C) had well-defined pore size distribution, high specific surface area (1264 m2·g−1) and high nitrogen content (6.92 wt.%), which was mainly composed of the pyridinic-N and pyrrolic-N species. Batch adsorption experiments demonstrated that the fabricated MR(0.25)/GO-500 porous carbon delivered excellent CO2 adsorption ability of 5.21 mmol·g−1 at 298.15 K and 500 kPa, and such porous carbon also exhibited fast adsorption kinetics, high selectivity of CO2/N2 and good recyclability. With the inherent microstructure features of high surface area and abundant N adsorption sites species, the MR/GO-derived porous carbon materials offer a potentially promising adsorbent for practical CO2 capture.  相似文献   

10.
常温下以间苯三酚和3-甲醛苯并噻吩作为原料,一步法合成了含硫酚醛树脂。在氩气保护下碳化,成功制备出了硫掺杂多孔碳(S-PC)。并利用扫描电镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)和氮气吸附-脱附仪对材料进行了形貌、结构和性能的表征。实验结果表明,所得样品具有较高比表面积和大量的微孔,经过调控,可以使制备的硫掺杂多孔碳的BET比表面积达到997 m2·g~(-1),并使其微孔孔体积达到0.44 cm3·g~(-1)。得益于较高的比表面积以及其富含微孔的特性,当材料应用于二氧化碳吸附时,具有较高的CO2吸附量,在273和298 K时分别高达5.13,3.22 mmol·g~(-1),并具有良好的选择性。  相似文献   

11.
常温下以间苯三酚和3-甲醛苯并噻吩作为原料,一步法合成了含硫酚醛树脂。在氩气保护下碳化,成功制备出了硫掺杂多孔碳(S-PC)。并利用扫描电镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)和氮气吸附-脱附仪对材料进行了形貌、结构和性能的表征。实验结果表明,所得样品具有较高比表面积和大量的微孔,经过调控,可以使制备的硫掺杂多孔碳的BET比表面积达到997 m2·g-1,并使其微孔孔体积达到0.44 cm3·g-1。得益于较高的比表面积以及其富含微孔的特性,当材料应用于二氧化碳吸附时,具有较高的CO2吸附量,在273和298 K时分别高达5.13,3.22 mmol·g-1,并具有良好的选择性。  相似文献   

12.
Four nanoporous carbons obtained from different polymers: polypyrrole, polyvinylidene fluoride, sulfonated styrene–divinylbenzene resin, and phenol–formaldehyde resin, were investigated as potential adsorbents for carbon dioxide. CO2 adsorption isotherms measured at eight temperatures between 0 and 60 °C were used to study adsorption properties of these polymer-derived carbons, especially CO2 uptakes at ambient pressure and different temperatures, working capacity, and isosteric heat of adsorption. The specific surface areas and the volumes of micropores and ultramicropores estimated for these materials by using the density functional theory-based software for pore size analysis ranged from 840 to 1990 m2 g?1, from 0.22 to 1.47 cm3 g?1, and from 0.18 to 0.64 cm3 g?1, respectively. The observed differences in the nanoporosity of these carbons had a pronounced effect on the CO2 adsorption properties. The highest CO2 uptakes, 6.92 mmol g?1 (0 °C, 1 atm) and 1.89 mmol g?1 (60 °C, 1 atm), were obtained for the polypyrrole-derived activated carbon prepared through a single carbonization-KOH activation step. The working capacity for this adsorbent was estimated to be 3.70 mmol g?1. Depending on the adsorbent, the CO2 isosteric heats of adsorption varied from 32.9 to 16.3 kJ mol?1 in 0–2.5 mmol g?1 range. Overall, the carbons studied showed well-developed microporosity and exceptional CO2 adsorption, which make them viable candidates for CO2 capture, and for other adsorption and environmental-related applications.  相似文献   

13.
An innovative technique to obtain high‐surface‐area mesostructured carbon (2545 m2 g?1) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10 min) with complete elimination of toxic HF usage. The obtained carbon material (JNC‐1) displays excellent CO2 capture ability (ca. 26.2 wt % at 0 °C under 0.88 bar CO2 pressure), which is twice that of CMK‐3 obtained by the HF etching method (13.0 wt %). JNC‐1 demonstrated higher H2 adsorption capacity (2.8 wt %) compared to CMK‐3 (1.2 wt %) at ?196 °C under 1.0 bar H2 pressure. The bimodal pore architecture of JNC‐1 led to superior supercapacitor performance, with a specific capacitance of 292 F g?1 and 182 F g?1 at a drain rate of 1 A g?1 and 50 A g?1, respectively, in 1 m H2SO4 compared to CMK‐3 and activated carbon.  相似文献   

14.
It is highly desirable to design advanced heteroatomic doped porous carbon for wide application. Herein, N-doped porous carbon (NPC) was developed via the fabrication of high nitrogen cross-linked triazine polymers followed by pyrolysis and activation with controllable porous structure. The as-synthesized NPC at the pyrolysis temperature of 700 °C possessed rich nitrogen content (up to 11.51 %) and high specific surface area (1353 m2 g−1), which led to a high CO2 adsorption capability at 5.67 mmol g−1 at 298.15 K and 5 bar pressure and excellent stability. When the activation temperature was at 600 °C, such NPC exhibited a superior electrochemical performance as anode for supercapacitors with a specific capacitance of 158.8 and 113 F g−1 in 6 M KOH at a current density of 1 and 10 A g−1, respectively. Notably, it delivered an excellent stability with capacity retention of 97.4 % at 20 A g−1after 6000 cycles.  相似文献   

15.
Waste ion-exchange resin was utilized as precursor to produce activated carbon by KOH chemical activation, on which the effects of different activation temperatures, activation times and impregnation ratios were studied in this paper. The CO2 adsorption of the produced activated carbon was tested by TGA at 30 °C and environment pressure. Furthermore, the effects of preparation parameters on CO2 adsorption were investigated. Experimental results show that the produced activated carbons are microporous carbons, which are suitable for CO2 adsorption. The CO2 adsorption capacity increases firstly and then decreases with the increase of activation temperature, activation time and impregnation rate. The maximum adsorption capacity is 81.24 mg/g under the condition of 30 °C and pure CO2. The results also suggest that waste ion-exchange resin-based activated carbons possess great potential as adsorbents for post-combustion CO2 capture.  相似文献   

16.
《中国化学会会志》2017,64(9):1041-1047
Activated carbons with a high mesoporous structure were prepared by a one‐stage KOH activation process without the assistance of templates and further used as adsorbents for CO2 capture. The physical and chemical properties as well as the pore structures of the resulting mesoporous carbons were characterized by N2 adsorption isotherms, scanning electron microscopy (SEM ), X‐ray diffraction (XRD ), Raman spectroscopy, and Fourier transform infrared (FTIR ) spectroscopy. The activated carbon showed greater specific surface area and mesopore volume as the activation temperature was increased up to 600°C, showing a uniform pore structure, great surface area (up to ~815 m2/g), and high mesopore ratio (~55%). The activated sample exhibited competitive CO2 adsorption capacities at 1 atm pressure, reaching 2.29 and 3.4 mmol/g at 25 and 0°C, respectively. This study highlights the potential of well‐designed mesoporous carbon as an adsorbent for CO2 removal and widespread gas adsorption applications.  相似文献   

17.
There is significant interest in high‐performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra‐hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water‐capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g?1 at P/P0=0.2 and 25 °C (20 % relative humidity or 6000 ppm). Benefiting from properties, such as defined morphology, narrow pore size distribution, and high heterogeneity, this series of functional carbons may serve as model materials for fundamental research on carbon chemistry and the advance of new types of materials for water‐vapor capture as well as other applications requiring combined highly hydrophilic surface chemistry, developed hierarchical porosity, and excellent stability.  相似文献   

18.
Design and synthesis of unique photoluminescent triptycene-based porous polymers (TBP-OH and TBP-NH2) bearing active functional groups is described herein. Pd catalyzed Sonogashira cross-coupling reaction was utilized to obtain these polymeric networks that are nanoporous and strongly fluorescent in THF. In solid state, these polymers demonstrated CO2 uptake up to 92 mg g?1 at 273 K/1bar and H2 up to 16 mg g?1 at 77 K/1bar which may be attributed to the presence of 3D robust triptycene and CO2-philic groups –OH and –NH2 in their polymeric framework. TBP-OH and TBP-NH2 also selectively capture CO2 over nitrogen and methane. CO2 capture by TBP-OH and TBP-NH2 is a physisorption process and hence reversible in nature. Suspensions of TBP-OH and TBP-NH2 in THF are strongly fluorescent and are also capable of detecting picric acid (an environmental pollutant and explosive) in trace amounts. The Stern–Volmer quenching constants (Ksv) for detection of picric acid (PA) are in the order of 105 M?1.  相似文献   

19.
Inspired by the spongy bone structures, three-dimensional (3D) sponge-like carbons with meso-microporous structures are synthesized through one-step electro-reduction of CO2 in molten carbonate Li2CO3−Na2CO3−K2CO3 at 580 °C. SPC4-0.5 (spongy porous carbon obtained by electrolysis of CO2 at 4 A for 0.5 h) is synthesized with the current efficiency of 96.9 %. SPC4-0.5 possesses large electrolyte ion accessible surface area, excellent wettability and electronical conductivity, ensuring the fast and effective mass and charge transfer, which make it an advcanced supercapacitor electrode material. SPC4-0.5 exhibits a specific capacitance as high as 373.7 F g−1 at 0.5 A g−1, excellent cycling stability (retaining 95.9 % of the initial capacitance after 10000 cycles at 10 A g−1), as well as high energy density. The applications of SPC4-0.5 in quasi-solid-state symmetric supercapacitor and all-solid-state flexible devices for energy storage and wearable piezoelectric sensor are investigated. Both devices show considerable capacitive performances. This work not only presents a controllable and facile synthetic route for the porous carbons but also provides a promising way for effective carbon reduction and green energy production.  相似文献   

20.
Using bamboo powder biochar as raw material, high-quality meso/microporous controlled hierarchical porous carbon was prepared—through the catalysis of Fe3+ ions loading, in addition to a chemical activation method—and then used to adsorb copper ions in an aqueous solution. The preparation process mainly included two steps: load-alkali leaching and chemical activation. The porosity characteristics (specific surface area and mesopore ratio) were controlled by changing the K2CO3 impregnation ratio, activation temperature, and Fe3+ ions loading during the activation process. Additionally, three FBPC samples with different pore structures and characteristics were studied for copper adsorption. The results indicate that the adsorption performance of the bamboo powder biochar FBPC material was greatly affected by the meso/micropore ratio. FBPC 2.5-900-2%, impregnated at a K2CO3: biochar ratio of 2.5 and a Fe3+: biochar mass ratio of 2%, and activated at 900 °C for 2 h in N2 atmosphere, has a very high specific surface area of 1996 m2 g−1 with a 58.1% mesoporous ratio. Moreover, it exhibits an excellent adsorption capacity of 256 mg g−1 and rapid adsorption kinetics for copper ions. The experimental results show that it is feasible to control the hierarchical pore structure of bamboo biochar-derived carbons as a high-performance adsorbent to remove copper ions from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号