首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) and (0.94 ? x)Na0.5Bi0.5TiO3–0.06BaTiO3xBiFeO3 (NBT–6BT–xBFO, x = 0.03, 0.05 and 0.08) thin films were deposited on Pt/Ti/SiO2/Si substrates by a sol–gel process. Relative permittivity and remnant polarization were maximized at 5 % BFO substitution. Compared with 0.94NBT–0.06BT, the leakage current density of 0.89NBT–0.06BT–0.05BFO at 600 kV/cm is reduced by one order of magnitude. Enhanced ferroelectricity was also achieved in 0.89NBT–0.06BT–0.05BFO, the remnant polarization (2P r) values of 0.89NBT–0.06BT–0.05BFO and 0.94NBT–0.06BT are 46 and 24 µC/cm2.  相似文献   

2.
The study presents results of examination on Na0.5Bi0.5TiO3 (NBT) ferroelectric synthesis through intermediate binary compound Bi4Ti3O12 (BIT). The first stage of the study related to obtaining BIT from oxide precursors, i.e. Bi2O3 and TiO2. The second stage included obtaining NBT from Bi4Ti3O12, Na2CO3 and TiO2. Two polymorphic modifications of TiO2 (anatase, rutile) and diversified initial homogenization of raw material batches were applied during examination.  相似文献   

3.
X-ray diffuse scattering has been measured by single-crystal X-ray diffraction on the lead-free piezoelectric perovskites Na0.5Bi0.5TiO3 (NBT) and (Na0.5Bi0.5)0.89Ba0.11TiO3 (NBT–Ba0.11). Evidence of a pronounced local structure or included phase different from the rhombohedral average symmetry (space group R3c), or of a modulated structure with a characteristic period of 40 Å, is presented for NBT from high-resolution synchrotron X-ray mapping and CCD diffractometer investigations. The additional scattering shows pronounced anisotropy and produces satellite peaks displaced by 0.2 in the h and k indices for reflections such as {640} indexed on the pseudo-cubic unit cell with a = 7.761(2) Å. By contrast, weaker, less anisotropic diffuse scattering is observed for tetragonal NBT–Ba0.11 (space group P4mm), which is directed along the pseudo-cubic 〈110〉. The lack of satellite peaks and pronounced anisotropic diffuse scattering in the tetragonal phase of phase NBT–Ba0.11 lends support to the idea that the massive tetragonal to rhombohedral phase transition in NBT at around 503–573 K, which is absent in NBT–Ba0.11, may be the key to understanding the local structure found repeatedly at room temperature in this complex material.  相似文献   

4.
Polycrystalline ceramics of 1 ? x[Na0.5Bi0.5TiO3] ? x[BiFeO3] (NBT–BFO) were synthesized by the modified Pechini's method to study their magnetic and magnetoelectric properties. A series of solid solutions exhibiting magnetoelectric output were formed when two iso-structural compounds Na0.5Bi0.5TiO3 (NBT) and BiFeO3 (BFO) were combined. Polarization-electric field hysteresis loops revealed that the maximum polarization (~23 μC/cm2 for x = 0.1) decreased continuously with the increase of BFO content, following a hard doped effect. Piezoelectric charge coefficient (d33) = 41 pC/N was obtained for the ceramics with x = 0.1 and the value continues to decrease with the composition. Magnetic hysteresis loops represent the canted antiferromagnetic nature for x  0.6 and ferromagnetic-like behavior for the BFO-rich compositions. Magnetoelectric coupling was determined by measuring the magnetoelectric voltage coefficient which is ~12.4 mV/cm-Oe at an ac magnetic field of 10 Oe (1 kHz), for x = 0.1 sample.  相似文献   

5.
Perovskite type oxides, sodium bismuth titanate (Na0.5Bi0.5TiO3), and Ag+, Cu2+, and Sn2+ doped Na0.5Bi0.5TiO3 were prepared by pechini and ion exchange methods, respectively. Photocatalytic activities of these catalysts were tested by decomposition of methylene blue (MB) under visible light irradiation. Results showed that the photocatalytic activity of metal ion doped Na0.5Bi0.5TiO3 was higher than undoped Na0.5Bi0.5TiO3. Relatively high photocatalytic performance of Ag+‐doped Na0.5Bi0.5TiO3 is mainly ascribed to the efficient separation of electron‐hole (e, h+) pairs, lower bandgap energy and the creation of active hydroxyl radicals ( ? OH). Further, the Ag+‐doped Na0.5Bi0.5TiO3 catalyst showed good reusability up to four cycles. A possible mechanism for the enhanced photocatalytic performance was proposed. The synthesized photocatalysts were characterized by XRD, SEM, EDS, XPS, FT‐IR, and UV/Vis DRS techniques.  相似文献   

6.
A series of Eu3+ ions co-doped (Gd0.9Y0.1)3Al5O12:Bi3+, Tb3+ (GYAG) phosphors have been synthesized by means of solvothermal reaction method. The XRD pattern of GYAG phosphor sintered at 1500 °C confirms their garnet phase. The luminescence properties of these phosphors have been explored by analyzing their excitation and emission spectra along with their decay curves. The excitation spectra of the GYAG:Bi3+, Tb3+, Eu3+ phosphors consists of broad bands in the shorter wavelength region due to 4f8 → 4f75d1 transition of Tb3+ ions overlapped with 6s2 → 6s16p1 (1S0 → 3P1) transition of Bi3+ ions and the charge transfer band of Eu3+–O2?. The present phosphors exhibit green and red colors due to 5D4 → 7F5 transition of Tb3+ ions and 5D0 → 7F1 transition of Eu3+ ions, respectively. The emission was shifted from green to red color by co-doping with Eu3+ ions, which indicate that the energy transfer probability from Tb3+ to Eu3+ ions are dependent strongly on the concentration of Eu3+ ions.  相似文献   

7.
Multiferroic BiFeO3–(Na0.5Bi0.5)TiO3 (BFO–NBT) nanopowders were successfully synthesized by a sol–gel method, and the visible-light photocatalytic and magnetic properties of BFO–NBT nanopowders were investigated. X-ray diffraction results indicated that the adding of NBT and the excess of natrium source could suppress the formation of secondary phases and made it easier to obtain single perovskite phase. High photoactivity of this catalyst for Rhodamine B (RhB) degradation under visible-light irradiation was detected, which is due to narrow band gap energy of 2.08 eV, higher surface area and pure phase compounds with no or less amounts of impurities. The BFO–NBT nanopowders showed a weak ferromagnetic order at room temperature, which should be attributed to the size-confinement effects of the nanostructures. It is suggested that BFO–NBT is a kind of new narrow band gap semiconductor visible-light photocatalyst with broad application prospects, in addition to potential applications for novel magnetoelectric devices.  相似文献   

8.
A combinatorial film of the LaCo1-xCrxO3 system was fabricated using the LaCoO3 and LaCrO3 targets at the NIST Pulsed Laser Deposition (PLD) facility. As the ionic size of Cr3+ is greater than that of Co3+, the unit cell volume of the series increases with increasing x. Using a custom screening tool, the Seebeck coefficient of LaCo1-xCrxO3 approaches a measured maximum of 286 μV/K, near to the cobalt-rich end of the film library (with x ≈ 0.49). The resistivity value increases continuously with increasing x. The measured power factor, PF, of this series, which is related to the efficiency of energy conversion, also exhibits a maximum at the composition of x ≈ 0.49, which corresponds to the maximum value of the Seebeck coefficient. Our results illustrate the efficiency of applying the high-throughput combinatorial technique to study thermoelectric materials.  相似文献   

9.
Structural, dielectric and piezoelectric properties of (1−x)(Na1/2Bi1/2)TiO3-xPb(Mg1/3Nb2/3)O3 (NBT-xPMN) solid solution have been investigated. An addition of PMN into NBT transformed the structure of sintered samples from rhombohedral to pseudocubic phase where x is larger than 0.1. In calcined powders, however, the intermediate structure were observed between rhombohedral and cubic phases near x=0.1. The formation of solid solution between NBT and PMN modified the dielectric and piezoelectric properties of NBT to be suitable for high temperature dielectric and piezoelectric material. With increasing the content of PMN, the temperature-stability of εr(T) increased and the high temperature dielectric loss decreased. In addition, the piezoelectric property of NBT-xPMN was enhanced, for the decrease of coercive field and conductivity promoted the domain reversal under the high electric field of the poling process.  相似文献   

10.
Terbium-doped yttrium iron garnet (TbxY3−x Fe5O12; x = 0.0, 0.2, 0.4, 0.6 and 0.8) nanoparticles thin films have been prepared onto quartz substrate by sol–gel method followed by spin coating process. Annealing of the films was processed at 900 °C in air for 2 h. The structures were investigated by using an X-ray diffractometer (XRD) and a field emission scanning electron microscope (FE-SEM). The magnetic properties were studied by a vibrating sample magnetometer (VSM). The XRD patterns of the films were consistent with a single phase garnet structure. The lattice parameter was initially increased with Tb3+ concentration due to the larger size of the Tb3+ ion compared to Y3+ ion, but a decrease in lattice parameter was observed at higher Tb3+ concentration due to the effect of film’s thickness. FE-SEM micrographs reveal that the particles were highly agglomerated. The grain’s sizes for all films were in the range of 40–59 nm. The magnetic measurements at room temperature (25 °C) show that the saturation magnetization (Ms) of the films was reduced with the increase in Tb3+ ions, which due to the antiparallel alignment between Tb3+ ions and Fe3+ ions. The films illustrate normal shapes of hysteresis loops except Tb0.2Y2.8Fe5O12 and Tb0.4Y2.6Fe5O12 films exhibiting two steps increments before being saturated. The coercivity values (Hc) demonstrate non linear dependency with the terbium concentration (x).  相似文献   

11.
A series of orange-red emitting phosphor Y(PO3)3: xEu3+ (x = 0.1–1.0) was prepared by a solid-state reaction route. The phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) as well as decay lifetimes. Studies revealed the phase transfer from monoclinic to orthorhombic when Y3+ is totally replaced by Eu3+, and expansion of the unit cell occurs with increasing Eu3+ doped content. The PL spectra show that the phosphors Y(PO3)3: xEu3+ can be effectively excited by near ultraviolet (n-UV) light, and exhibit strong red-orange emission with no concentration quenching. The profile of PL spectra changes significantly at high Eu3+ content (x ≥ 0.80), which is due to the variation of preference for substitution of Eu3+. The luminescence due to the 5D0 → 7FJ (J = 1, 2) transitions at 77 K exhibits its own spectral features for different crystallographic site. It is found that Eu3+ ions occupy the centers of octahedral polyhedron and form Ci/C1 point group in Y(PO3)3.  相似文献   

12.
Dielectric ceramics have been widely used in advanced microelectronics systems due to their inherent rapid charging/discharging capabilities and superb power density. However, concurrently attaining high energy storage density (Wrec), superior efficiency (η), and excellent thermal stability are arduous tasks for actual applications in dielectric ceramics. Herein, the introduction of predictable defects A-site vacancies (VA) and oxygen vacancies (VO) into the morphotropic phase boundary (MPB) of (Bi0.45La0.05Na0.5)0.94Ba0.06TiO3 (BLNBT) ceramics leads to a pinning effect in the grain boundary to improve the breakdown strength and energy storage performance. According to this strategy, the novel Sr0.8Bi0.10.1Ti0.8Zr0.2O2.95 (SBTZ)-modified BLNBT ceramics are designed and manufactured, which include SBTZ with a high relaxation behavior gene and BLNBT with an inherently high maximum polarization gene. As a result, a large Wrec of 3.84 J/cm3 with an excellent η of 90.8%, and outstanding charge/discharge capabilities (CD ~ 584.99 A/cm2, PD ~ 40.94 MW/cm3 and τ0.9 ~ 95 ns) in the 0.75BLNBT-0.25SBTZ ceramic are achieved. Notably, the corresponding ceramic shows a slight degradation of Wrec with a variation of less than 8% (RT ~ 200 °C), while the η remains at over 90%. The predictable defect engineering strategy proposed in this work is an effective way to develop new Bi0.5Na0.5TiO3-based systems with good energy storage performances.  相似文献   

13.
以硼酸和碳酸盐为原料,用高温固相法制备了可被(近)紫外光(369、254 nm)有效激发的Tb3+单掺杂Li Ba1-xBO3∶xTb3+(物质的量分数x=0.02、0.03、0.04、0.05、0.06、0.07)及Bi3+和Tb3+共掺杂LiBa0.95-yBO3∶0.05Tb3+,y Bi3+(物质的量分数y=0.02、0.03、0.04、0.05、0.06、0.07)的2个系列荧光粉,产物的结构和形貌分别用粉末X射线衍射(PXRD)和扫描电子显微镜进行表征。PXRD测定结果表明2个系列的产物均为纯相LiBaBO3。通过对第一系列产物荧光光谱的测定,筛选出发光强度最好的产物,据此确定铽离子的最佳掺杂量;在此基础上制备出铋离子掺杂量不同的第二系列荧光粉。荧光光谱测定的实验结果表明,Tb3+/Bi3+共掺杂的荧光粉的发光强度好于Tb3+单掺杂的荧光粉,这说明Bi3+对Tb3+有敏化作用;而且随着Bi3+掺杂量的增加,产物的荧光强度表现出先增加后减小的趋势,当Bi3+的掺杂量y=0.03时,产物的荧光强度达到最大。Bi3+和Tb3+之间存在偶极-四极相互作用而进行能量传递。系列荧光粉的CIE坐标显示其发光颜色在一定程度上呈现出由绿色光到白光的渐变趋势。  相似文献   

14.
Three novel lanthanide complexes with the ligand 4,4-difluoro-1-(1,5-dimethyl-1H-pyrazol-4-yl)butane-1,3-dione (HL), namely [LnL3(H2O)2], Ln = Eu, Gd and Tb, were synthesized, and, according to single-crystal X-ray diffraction, are isostructural. The photoluminescent properties of these compounds, as well as of three series of mixed metal complexes [EuxTb1-xL3(H2O)2] (EuxTb1-xL3), [EuxGd1-xL3(H2O)2] (EuxGd1-xL3), and [GdxTb1-xL3(H2O)2] (GdxTb1-xL3), were studied. The EuxTb1-xL3 complexes exhibit the simultaneous emission of both Eu3+ and Tb3+ ions, and the luminescence color rapidly changes from green to red upon introducing even a small fraction of Eu3+. A detailed analysis of the luminescence decay made it possible to determine the observed radiative lifetimes of Tb3+ and Eu3+ and estimate the rate of excitation energy transfer between these ions. For this task, a simple approximation function was proposed. The values of the energy transfer rates determined independently from the luminescence decays of terbium(III) and europium(III) ions show a good correlation.  相似文献   

15.
A set of new triple molybdates, LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45, was successfully manufactured by the microwave-accompanied sol–gel-based process (MAS). Yellow molybdate phosphors LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45 with variation of the LixNa1-x (x = 0, 0.05, 0.1, 0.2, 0.3) ratio under constant doping amounts of Ho3+ = 0.05 and Yb3+ = 0.45 were obtained, and the effect of Li+ on their spectroscopic features was investigated. The crystal structures of LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45 (x = 0, 0.05, 0.1, 0.2, 0.3) at room temperature were determined in space group I41/a by Rietveld analysis. Pure NaCaGd0.5Ho0.05Yb0.45(MoO4)3 has a scheelite-type structure with cell parameters a = 5.2077 (2) and c = 11.3657 (5) Å, V = 308.24 (3) Å3, Z = 4. In Li-doped samples, big cation sites are occupied by a mixture of (Li,Na,Gd,Ho,Yb) ions, and this provides a linear cell volume decrease with increasing Li doping level. The evaluated upconversion (UC) behavior and Raman spectroscopic results of the phosphors are discussed in detail. Under excitation at 980 nm, the phosphors provide yellow color emission based on the 5S2/5F45I8 green emission and the 5F55I8 red emission. The incorporated Li+ ions gave rise to local symmetry distortion (LSD) around the cations in the substituted crystalline structure by the Ho3+ and Yb3+ ions, and they further affected the UC transition probabilities in triple molybdates LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45. The complex UC intensity dependence on the Li content is explained by the specificity of unit cell distortion in a disordered large ion system within the scheelite crystal structure. The Raman spectra of LixNa1-xCaGd0.5(MoO4)3 doped with Ho3+ and Yb3+ ions were totally superimposed with the luminescence signal of Ho3+ ions in the range of Mo–O stretching vibrations, and increasing the Li+ content resulted in a change in the Ho3+ multiplet intensity. The individual chromaticity points (ICP) for the LiNaCaGd(MoO4)3:Ho3+,Yb3+ phosphors correspond to the equal-energy point in the standard CIE (Commission Internationale de L’Eclairage) coordinates.  相似文献   

16.
In this work, the colossal dielectric properties and Maxwell—Wagner relaxation of TiO2–rich Na1/2Y1/2Cu3Ti4+xO12 (x = 0–0.2) ceramics prepared by a solid-state reaction method are investigated. A single phase of Na1/2Y1/2Cu3Ti4O12 is achieved without the detection of any impurity phase. The highly dense microstructure is obtained, and the mean grain size is significantly reduced by a factor of 10 by increasing Ti molar ratio, resulting in an increased grain boundary density and hence grain boundary resistance (Rgb). The colossal permittivities of ε′ ~ 0.7–1.4 × 104 with slightly dependent on frequency in the frequency range of 102–106 Hz are obtained in the TiO2–rich Na1/2Y1/2Cu3Ti4+xO12 ceramics, while the dielectric loss tangent is reduced to tanδ ~ 0.016–0.020 at 1 kHz due to the increased Rgb. The semiconducting grain resistance (Rg) of the Na1/2Y1/2Cu3Ti4+xO12 ceramics increases with increasing x, corresponding to the decrease in Cu+/Cu2+ ratio. The nonlinear electrical properties of the TiO2–rich Na1/2Y1/2Cu3Ti4+xO12 ceramics can also be improved. The colossal dielectric and nonlinear electrical properties of the TiO2–rich Na1/2Y1/2Cu3Ti4+xO12 ceramics are explained by the Maxwell–Wagner relaxation model based on the formation of the Schottky barrier at the grain boundary.  相似文献   

17.
(1−x%)(Na0.5Bi0.5)TiO3x%SrTiO3 (NBTSx) thin films were deposited on Pt/TiO2/SiO2/Si substrates by a spin-on sol–gel method and rapid thermal annealing. The stock solutions were prepared using sodium acetate, bismuth acetate, strontium acetate, and titanium n-butoxide as precursors, ethanol, and acetic acid as solvents and acetylacetone as the chelating agent. The thermal treatment conditions were determined by thermal analyses of the dry gel powders derived from the stock solutions. Structure and dielectric tunable properties of the films were studied as functions of Sr concentration. NBTSx films exhibit the perovskite structure of a pseudo-cubic symmetry with the lattice parameters increasing with increasing Sr concentration. It was found that the substitution of Sr in Na0.5Bi0.5TiO3 may greatly reduce the dielectric loss while decrease the tunability at the same time. The best figure of merit was achieved in NBTS80 films. The results were discussed and compared with related materials.  相似文献   

18.
Y4MgSi3O13:Bi3+, Eu3+ nanophosphors have been prepared by a facile sol–gel method. The products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and fluorescence measurements. The results show that the nanophosphors are of single phase hexagonal Y4MgSi3O13 with size-distribution of 50–90 nm in diameter. White-light emission has been obtained from Bi3+ and Eu3+ co-doped Y4MgSi3O13 nanophosphors upon excitation of 350 nm ultraviolet light. It is noted that Bi3+ ions can occupy two different Y3+ sites and generate different emissions from the 3p1 → 1s0 transition. Warm white light has been obtained from Y4MgSi3O13:Bi3+, Eu3+ nanophosphors according to Commission International de I’Eclairage (CIE) chromaticity coordinates and color temperature (Tc) with appropriately adjusted contents of Bi3+ and Eu3+. The results indicate that Y4MgSi3O13:0.08Bi3+, 0.04Eu3+ (x = 0.31, y = 0.31, Tc = 6907 K) are potential nanophosphors for white light-emitting diodes (LEDs) applications.  相似文献   

19.
New LnxBi2–xSe3 (Ln: Sm3+, Eu3+, Gd3+, Tb3+) based nanomaterials were synthesized by a co‐reduction method. Powder XRD patterns indicate that the LnxBi2–xSe3 crystals (Ln = Sm3+, Eu3+, x = 0.00–0.44 and Ln = Gd3+, Tb3+, x = 0.00–0.50) are isostructural with Bi2Se3. The cell parameter c decreases for Ln = Eu3+, Gd3+, Tb3+ upon increasing the dopant content (x), while a slightly increases. Changes in lattice parameters could be related to the radii of cations. SEM images show that doping of the lanthanide ions in the lattice of Bi2Se3 generally results in nanoflowers. For the terbium compound two kinds of morphologies (nanoflowers and nanobelts) were observed. UV/Vis absorption and emission spectroscopy reveals mainly electronic transitions of the Ln3+ ions. Emission spectra show intense transitions from the excited to the ground state of Ln3+ and energy transfer from the Bi2Se3 lattice. Emission spectra of europium‐doped materials, in addition to the characteristic red emission peaks of Eu3+, show an intense blue emission band centered at 432 nm, originating from the 4f65d1 to 4f7 configuration in Eu2+. EPR measurements confirm the existence of Eu2+ in the materials. Interestingly, for all samples starting at low Ln3+ concentration, the emission intensity rises to a maximum at a Ln3+ concentration of x = 0.2 and falls again steadily to a minimum at x = 0.45.  相似文献   

20.
The thin films of mixture of xBiFeO3-(1 − x)Bi4Ti3O12 (x = 0.4, 0.5, and 0.6) system were prepared by a sol–gel process. The thicknesses of the thin films were 540, 500, and 570 nm, respectively. The crystal structure of all thin films annealed at 650 °C was analyzed by X-ray diffraction. It was found that the thin films at x = 0.4 and 0.5 mainly consisted of a Bi4Ti3O12 phase while Bi5Ti3FeO15 was the major phase of the thin film at = 0.6. The thin film (x = 0.6) showed better ferroelectric properties in remnant polarization and polarization fatigue than those observed in the thin films (x = 0.4 and 0.5). The values of remnant polarization 2P r and coercive field 2E c of the thin film at x = 0.6 were 36 μC/cm2 and 192 kV/cm at an applied electric field of 260 kV/cm, respectively. There was almost no polarization fatigue up to 1010 switching cycles. Also weak ferromagnetism was observed in the thin film at x = 0.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号