首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current commercial white light-emitting diodes (LEDs) are generally based on the combination of blue LED chips and Y3Al5O12:Ce3+ yellow phosphors. However, because of the lack of red component, such white LED devices exhibit cool white-light emissions with low color rendering index (Ra < 75, R9 < 0). Therefore, it is urgent to discover new blue-light-excitable yellow-emitting phosphors with enhanced red emissions for fabricating high color-quality white LEDs. In the present work, we demonstrate a novel broadband yellow-emitting CaGd2HfScAl3O12:Ce3+ garnet phosphor for blue-light-excited white LEDs with improved color rendering index. The as-prepared CaGd2HfScAl3O12:Ce3+ garnet phosphor possesses a cubic structure with Ia3¯d space group, and the unit cell parameters of the representative CaGd2HfScAl3O12:2%Ce3+ phosphor are a = b = c = 12.450 Å, α = β = γ = 90°, and V = 1,929.59(4) Å3. Impressively, we find that the CaGd2HfScAl3O12:Ce3+ garnet phosphor shows an intense absorption band in the 300–500 nm wavelength range with a maximum at 452 nm owing to the 4f→5d transition of Ce3+ ions. On 452 nm excitation, the optimal CaGd2HfScAl3O12:2%Ce3+ sample exhibits a broad asymmetric yellow emission band in the wavelength range of 470–750 nm with peak at 564 nm and full width at half maximum of 151 nm. The Commission Internationale de l’Eclairage chromaticity coordinates and internal quantum efficiency of the CaGd2HfScAl3O12:2%Ce3+ sample are (0.4485, 0.5157) and 30.4%, respectively. Finally, a white LED device is fabricated by combing a 450 nm blue LED chip with commercial Y3Al5O12:Ce3+ yellow-emitting phosphor, which generates white light with low color rendering index (CRI; Ra = 74.7, R9 = ?12.7) and high correlated color temperature (CCT = 6,554 K) under the 60 mA driving current. In sharp contrast, another white LED device, which is made by coating our as-prepared CaGd2HfScAl3O12:2%Ce3+ yellow-emitting phosphors onto the surface of a 450 nm blue LED chip, produces white-light emission with high CRI value (Ra = 84.5, R9 = 26.3) and relatively low CCT of 5,649 K. This work reveals that the newly discovered broadband yellow-emitting CaGd2HfScAl3O12:Ce3+ phosphors can serve as a potential color converter in high-color-quality phosphor-converted white LEDs.  相似文献   

2.
The development of high-brightness far-red-emitting phosphors with emission wavelength within 650–750 nm is of great significance for indoor plant cultivation light-emitting diode (LED) lighting. Herein, we demonstrate a novel efficient far-red-emitting phosphors CaMg2La2W2O12:Mn4+ (abbreviated as CMLW:Mn4+) toward application in plant cultivation LEDs. Interestingly, the CMLW:Mn4+ phosphors show a broad excitation band in the 250–600 nm spectral range with two peaks at 352 and 479 nm, indicating they could be efficiently excited by near-ultraviolet and blue light. Under 352 nm excitation, the CMLW:Mn4+ phosphors exhibit an intense far-red emission band in the wavelength range of 650–800 nm peaking at 708 nm, corresponding to the 2Eg → 4A2g transition of Mn4+ ions. Mn4+ doping concentration-dependent luminescence properties are studied in detail, and the concentration quenching mechanism is also investigated. Particularly, the internal quantum efficiency of CMLW:Mn4+ phosphors reaches as high as 44%, and their PL spectra match well with the absorption spectrum of phytochrome PFR (PFR stands for far-red-absorbing form of phytochrome). Furthermore, a prototype LED device is fabricated by coating the as-prepared CMLW:0.8%Mn4+ phosphors on a 460 nm blue LED chip, which produces bright far-red emissions upon 20–300 mA driving currents. This work reveals that the newly discovered far-red-emitting CMLW:Mn4+ phosphors hold great potential for application in indoor plant cultivation.  相似文献   

3.
The Ce3+ activated phosphors Ca4Si2O7F2:Ce3+ are prepared by a solid state reaction technique. The UV–vis luminescence properties as well as fluorescence decay time spectra are investigated and discussed. The results revealed that there were two kinds of Ce3+ luminescence behavior with 408 and 470 nm emissions, respectively. Under 355 nm excitation, the Ce(1) emission (408 nm) is dominant at low doping concentration, and then the Ce(2) emission (470 nm) get more important with increasing of Ce3+ concentrations in the host. The phosphors Ca4Si2O7F2:xCe3+ show tunable emissions from blue area to green-blue area under near-ultraviolet light excitation, indicating a potential application in near-UV based w-LEDs.  相似文献   

4.
Cr3+-doped phosphors show significant application potential in near-infrared (NIR) light-emitting diodes (LEDs). However, the development of thermally stable and efficient NIR phosphors still faces enormous challenges. Herein, NIR phosphors K2NaMF6:Cr3+ (M3+ = Al3+, Ga3+, and In3+) were synthesized by the hydrothermal method. The represented K2NaAlF6:Cr3+ phosphor can be effectively excited by blue light (~430 nm) to present broadband emission at half a maximum of 96 nm peaking at ~ 728 nm. Meanwhile, the K2NaAlF6:Cr3+ phosphor exhibits excellent internal quantum efficiency (IQE = 68.08%) and nearly zero-thermal-quenching behavior, which is able to maintain 96.5% emission intensity at 150 °C of the initial value at 25 °C. The NIR phosphor-converted LED was fabricated based on K2NaAlF6:Cr3+ phosphor and a blue LED chip, showing a NIR output power of 394.39 mW at 300 mA with a high photoelectric conversion efficiency of 10.9% at 20 mA. Using the high-power NIR LED as a lighting source, transparent and quick veins imaging as well as non-destructive testing were demonstrated, suggesting the NIR phosphor has a wide range of practical applications.  相似文献   

5.
Developing highly efficient cyan-emitting fluorescent materials is essential to bridge the cyan gap in phosphor-converted white light-emitting diodes for full-spectrum white illumination. Here, a Bi-doped cyan phosphor has been reported to solve this gap. The phase purity, photoluminescence emission/excitation spectra, concentration quenching, lifetime decay curves, and temperature-dependent photoluminescence emission spectra were systematically investigated. SrLaGaO4:Bi3+ exhibits a broad excitation band (250–400 nm), which matches with the emission of a commercial near-ultraviolet light-emitting diode chip. The cyan light peaked at 475 nm is observed, which is attributed to the 3P11S0 transition of Bi3+. The thermal quenching experiment was performed, and the activation energy was calculated as 0.36 eV. Finally, full-spectrum white light-emitting diode devices were fabricated using SrLaGaO4:Bi3+ phosphors, commercial blue BaMgAl10O17:Eu2+ phosphor, green (Ba, Sr)2SiO4:Eu2+ phosphor, and red CaAlSiN3:Eu2+ phosphor, which displayed an International Commission on an illumination coordinate of (0.3732, 0.3850), a correlated color temperature of 4290 K, and a color rendering index of 93.2 at a drive current of 20 mA. This result indicates that SrLaGaO4:Bi3+ plays an essential role in bridging the cyan gap, providing new inspiration for applying cyan-emitting phosphors in full-spectrum white lighting.  相似文献   

6.
Cerium-doped terbium aluminum garnet phosphors, Tb3Al5O12:Ce3+ (TAG:Ce3+), were prepared with different methods: co-precipitation (CP), half dry-half wet (HDHW), sol-combustion (SC) and Pechini method plus conventional solid state reaction (SS) method. Comparative study on the phase-formation, particle size, morphologies and luminescent characteristics of the phosphors synthesized with different methods was carried out by means of XRD, FE-SEM and photoluminescence (PL) analysis and SC method was confirmed by the comparison of the results to be an easy and an effective process for preparing efficient and nano-sized Tb3Al5O12:Ce3+ phosphors. Various factors influencing particle size, morphology and PL of the phosphors, such as precursor preparation, reaction temperature and heating time, were also investigated. Light-emitting diodes (LEDs) were fabricated with each phosphor and a ∼460 nm emitting InGaN chip. The LEDs from SS, HDHW and CP exhibit strong white emission while those from SC and Pechini emit yellow, revealing that the emission characteristics of LEDs are influenced not only by the morphology and the particle size of the phosphors, but also by the preparing process of the phosphors.  相似文献   

7.
Efficient cyan‐emitting solid carbon dots (CDs) were synthesized via a one‐pot hydrothermal method. The obtained solid CDs show a broad absorption from 270–460 nm with a maximum around 400 nm, and emit intense cyan light around 500 nm with an internal photoluminescence quantum efficiency of 34.1 % under 400 nm excitation. The emission maximum of the solid CDs remains unchanged under 320–400 nm excitations. Compared with dilute aqueous of CDs (2.5 mg mL?1), the emission of solid CDs shows an obvious red‐shift of 50 nm. The red‐shift is caused by resonant energy transfer due to larger spectral overlap and smaller interparticle distance, together with a new surface state caused by aggregation in solid CDs. A lamp with white LEDs was fabricated by dropping a mixture of solid CDs, CaAlSiN3:Eu2+ and silicon resin on the top of a near‐ultraviolet LED chip. Under an operating current of 20 mA, the as‐fabricated white LED generates a high‐quality, warm white light with a color rendering index of 86.1, a color temperature of 4340 K, and a luminescence efficiency of 31.3 lm W?1.  相似文献   

8.
Developing highly efficient green-emitting phosphors is very significant because human eyes are sensitive to green spectral region. Herein, Mn2+-activated Zn2GeO4 phosphors, which can emit bright green light with an ultrahigh internal quantum efficiency of 98.5%, were prepared by a solid-state reaction technology in ambient atmosphere. At 323 nm irradiation, the emission spectrum shows a narrow band centered at 534 nm, which is ascribed to the 4T16A1 transition of Mn2+, with a full width at half maxima of 49.5 nm. Through monitoring the temperature-dependent photoluminescence emission intensity and decay time of Mn2+, we explored the thermometric properties of the resultant compound and found maximum relative sensitivities of Zn2GeO4:0.02Mn2+ phosphor are 4.90% K?1 and 0.74% K?1, respectively. Furthermore, green afterglow phenomenon is observed in the designed phosphors, and its mechanism is verified by discussing the thermoluminescence. Because of the excellent luminescence behaviors, various multimode luminescent patterns for information encryption are designed, including anticounterfeiting and fingerprint identification. Furthermore, using the prepared Zn2GeO4:0.02Mn2+ as green-emitting components, a white-light-emitting diode with suitable color coordinates, high color rending index (>90), and low correlated color temperature (5,000–6,000 K) was fabricated. These results demonstrate that Mn2+-activated Zn2GeO4 phosphors are multifunctional green-emitting components for optical thermometry, anticounterfeiting, fingerprint detection, and solid-state lighting applications.  相似文献   

9.
In this work, a novel whitlockite-structure red-emitting phosphor host, Sr9(Mg0.5Mn0.5)K(PO4)7, is designed and successfully synthesized via a solid-state reaction. Upon X-ray diffractometer Rietveld refinement, it is revealed that this compound possesses compact Eu2+-Mn2+ distance (3.6809 Å) and large intra-Mn2+ distance (8.9905 Å), which is beneficial to the high-efficient Eu2+-Mn2+ energy transfer. By Eu2+ sensitization, our new phosphor exhibits a high-saturated and bright red Mn2+ emission at 620 nm with high color purity of 97.9%. Great emission enhancement up to 245 times than host is achieved by La3+ heterovalent substitution, which can be ascribed to the La3+-induced further structural confinement effect. Moreover, the quantum efficiency is boosted by twofold. The as-fabricated white phosphor-converted LEDs device shows bright warm white light with correlated color temperature (CCT) of 3,487 K, color-rendering index (CRI) of 92.4, and luminous efficacy of 31.59 lm/W. This work proves the feasibility of chemical unit co-substitution strategy in emission engineering of Mn2+-based phosphors, which can stimulate further studies on the red-emitting phosphor materials.  相似文献   

10.
Highly efficient phosphor‐converted light‐emitting diodes (pc‐LEDs) are popular in lighting and high‐tech electronics applications. The main goals of present LED research are increasing light quality, preserving color point stability and reducing energy consumption. For those purposes excellent phosphors in all spectral regions are required. Here, we report on ultra‐narrow band blue emitting oxoberyllates AELi2[Be4O6]:Eu2+ (AE=Sr,Ba) exhibiting a rigid covalent network isotypic to the nitridoalumosilicate BaLi2[(Al2Si2)N6]:Eu2+. The oxoberyllates’ extremely small Stokes shift and unprecedented ultra‐narrow band blue emission with fwhm ≈25 nm (≈1200 cm?1) at λem=454–456 nm result from its rigid, highly condensed tetrahedra network. AELi2[Be4O6]:Eu2+ allows for using short‐wavelength blue LEDs (λem<440 nm) for efficient excitation of the ultra‐narrow band blue phosphor, for application in violet pumped white RGB phosphor LEDs with improved color point stability, excellent color rendering, and high energy efficiency.  相似文献   

11.
《印度化学会志》2023,100(9):101071
Rare earth (RE) activated nanophosphors are the prime elements employed to manufacture light emitting diodes (LEDs) for the current solid state lighting (SSL) industry. The apparent lack of reddish orange emitting nanophosphors is proving to a constraint in the commercialization of the white light emitting diodes (WLEDs). Herein, the size of BaTiO3 (BTO): Sm3+ and K+ co-activated BTO: Sm3+ nanophosphor, with an average particle size of 80 nm, have been produced by a modified sol gel technique. The synthesized nanophosphors emit a brilliant reddish-orange light when excited at 406 nm. The relative photoluminescence (PL) studies of Sm3+ doped BTO and Sm3+ doped BTO with K+ nanophosphor show that adding K+ doubles the intensity of the emitted light and improves the thermal stability in a significant way. The results of the research indicated that using the aforementioned nanophosphor in the future may be advantageous for solid-state lighting systems, including warm LEDs with cyan light chips.  相似文献   

12.
A series of yellow-emitting oxynitride Ca0.65Si10Al2O0.7N15.3:xEu2+ phosphors with α-sialon structure were synthesized. The phase composition and crystal structure were identified by X-ray diffraction and the Rietveld refinement. The excitation and emission spectra, reflectance spectra and thermal stability were investigated in detail, respectively. Results show that Ca0.65Si10Al2O0.7N15.3:0.12Eu2+ phosphors can be efficiently excited by UV-Vis light in the broad range of 290–450 nm and exhibit broad emission spectra peaking at 550–575 nm. The concentration quenching mechanism are discussed in detail and determined to be the dipole-dipole interaction. When the temperature increased to 150 °C, the emission intensity of Ca0.65Si10Al2O0.7N15.3:0.12Eu2+ phosphor is 88.46% of the initial value at room temperature. White LED was fabricated with N-UV LED chip combined with blue Ca3Si2O4N2:Ce3+ and yellow Ca0.65Si10Al2O0.7N15.3:Eu2+ phosphors. The color rendering index and correlated color temperature of this white LED were measured to 78.94 and 6728.12 K, respectively. All above results demonstrate that the as-prepared Ca0.65Si10Al2O0.7N15.3:xEu2+ may serve as a potential yellow phosphor for N-UV w-LEDs.  相似文献   

13.
The Eu2+- and Ce3+-doped CaAl2S4 phosphors were comparatively synthesized by conventional solid-state reaction and the evacuated sealed quartz ampoule. The X-ray diffraction (XRD) patterns show that the sample with better crystalline quality was prepared by the evacuated sealed quartz ampoule, resulting in the enhancement of the emission intensity of Eu2+ ion by a factor of 1.7. The intensive green LEDs were also fabricated by combining CaAl2S4:Eu2+ with near-ultraviolet InGaN chips (λem=395 nm). The dependence of as-fabricated green LEDs on forward-bias currents shows that it presents good chromaticity stability and luminance saturation, indicating that CaAl2S4:Eu2+ is a promising green-emitting phosphor for a near-UV InGaN-based LED. In addition, the optical properties of CaAl2S4:Ce3+ were systematically investigated by means of diffuse reflectance, photoluminescence excitation and emission, concentrating quenching and the decay curve.  相似文献   

14.
Ca3Al6Si2O16: Ce3+, Tb3+ phosphors have been prepared by sol–gel method. The structure and photoluminescence properties were studied with careful. The results indicated that the single-phased Ca3Al6Si2O16 phosphors crystallize at 1,000 °C for 2 h in conventional furnace. With appropriate concentrations of Ce3+ and Tb3+ ions into Ca3Al6Si2O16 matrix, these materials exhibit blue phosphors and white light under ultraviolet radiation. White-light emission can be achieved because of a 400 nm emission ascribed to transitions of Ce3+ ions and three sharp peaks at 487, 543, 585 nm, respectively, resulting from transitions of Tb3+ ions.  相似文献   

15.
采用水热法制备出Ca9Y(PO47:Ce3+,Tb3+纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca9Y(PO47基质中引入Ce3+,Tb3+离子对发光性能的影响规律。研究发现因Tb3+离子自身能量交叉驰豫的存在,使得单掺Tb3+时,通过调节Tb3+离子的浓度可以实现对发光颜色的控制。同时研究了Ce3+-Tb3+之间的能量传递为电多极相互作用的偶极-四极机制,Ce3+-Tb3+之间最大的能量传递效率为55.6%。Ca9Y(PO47:Ce3+,Tb3+的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

16.
The preparation of two cerium-substituted sodium yttrium silicate phosphors, NaY9Si6O26:Ce3+ and Na3YSi2O7:Ce3+, was achieved using rapid heating via a modified microwave-assisted preparation technique. Activated carbon is used as a microwave susceptor allowing reaction temperatures greater than 1000 °C to be reached in minutes while producing the reducing atmosphere necessary to achieve Ce3+. Because this method immediately heats the sample and does not employ a H2/N2 gas mixture to maintain Ce3+ in its reduced state, volatilization of starting materials is limited, allowing the products to be prepared from a stoichiometric mixture of starting materials. The samples prepared were characterized using synchrotron X-ray powder diffraction and fluorescence spectroscopy. Photoluminescence measurements indicate NaY9Si6O26:Ce3+ contains a broad excitation band in the UV ranging between 280 nm and 330 nm that produces a blue emission between 350 nm and 500 nm with a 10% quantum yield. Na3YSi2O7:Ce3+ has a strong absorption band at 350 nm and also emits in the blue (375 nm–500 nm) with a quantum yield of 28%.  相似文献   

17.
The structural and optical properties of the Er3+-Tm3+-Yb3+codoped CaMoO4 phosphors prepared by chemical route have been explored. The crystalline structures of the prepared phosphors have been investigated with the help of X-ray diffraction analysis. The presence of different vibrational modes and absorption bands arising due to the transitions from the ground state to different excited states of rare earth ions have been identified using the Raman and UV-VIS-NIR absorption spectra of the developed phosphor, respectively. The concentration quenching effect on the luminescence property of the prepared materials has been explained in detail. The upconversion luminescence property of the Er3+-Tm3+-Yb3+codoped CaMoO4 phosphor annealed at different temperatures under 980 nm and 808 nm excitations have been reported. The energy transfer Er3+ → Tm3+, Yb3+ → Er3+ and Tm3+ has been found to be responsible for efficient UC emission. The dipole-dipole interaction is observed to be responsible for the concentration quenching of the luminescence intensity. The effect of annealing temperature on the upconversion luminescence property has been explained in detail. The results suggest that the developed tri-doped phosphor may be suitable in making the efficient NIR to visible upconverter and lighting based optical devices.  相似文献   

18.
The blue phosphors Na(2?x)Ca(1?x)SiO4:xCe3+ were synthesized by the sol–gel method and their luminescence characteristics were investigated for the first time. Structural information about prepared samples is obtained by analyzing the XRD patterns and SEM micrographs. The photoluminescence (PL) excitation spectra indicate that the Na(2?x)Ca(1?x)SiO4:xCe3+ phosphors can be effectively excited by ultraviolet (360 nm) light. The PL emission spectra exhibit tunable blue broadband emission with the dominant wavelength of 427–447 nm under excitation of 360 nm by controlling the doping concentration of Ce3+. The concentration quenching effect for Ce3+ was found at the optimum doping concentration of 4 mol%. The Commission Internationale de l’Eclairage 1931 chromaticity coordinates of Na1.96Ca0.96SiO4:0.04Ce3+ are (0.1447, 0.0787), which are better color purity compared to the commercial Eu2+-doped BaMgAl10O17 phosphor. Na1.96Ca0.96SiO4:0.04Ce3+ composition shows intense blue emission (peak wavelength, 439 nm) with relative intensity versus commercial BaMgAl10O17:Eu2+ blue phosphor (Nichia) 65 and 158 % under 254 and 365 nm excitation, respectively. All the results indicate that Na(2?x)Ca(1?x)SiO4:xCe3+ phosphors are potential candidate as a blue emitting phosphor for UV-converting white light-emitting diodes.  相似文献   

19.
Strong orange-red-emitting Ba2LaTaO6:Eu3+ phosphors were designed and applied in various optical applications of luminescence lifetime thermometer, anti-counterfeiting film, and solid-state lighting applications. The crystal structure, elemental composition, asymmetry ratio, and other luminescent behaviors were investigated in detail. Especially, the optimal Ba2LaTaO6:0.1Eu3+ phosphor presented remarkable quantum yield (45.29%) and thermal stability (71.52% at 423 K). Based on the temperature-dependent luminescence decay curves, the maximum relative sensing sensitivity was 0.185 × 10?2 K?1 at 513 K. In addition, a novel anti-counterfeiting technique was introduced. The fabricated polydimethylsiloxane films exhibited three different colors under the irradiations of room light, 254 nm light, and 365 nm light, respectively. Eventually, the packaged light-emitting diode displayed the pure orange-red emission. Briefly, a series of the Eu3+-activated Ba2LaTaO6 phosphors with excellent luminescent properties were characterized and further applied in several optical fields for the first time.  相似文献   

20.
Phosphors with outstanding luminescence thermal stability are desirable for high-power phosphor-converted light-emitting diode (pc-LED) lightings. High structural rigidity and large bandgap of phosphor hosts are helpful to suppress nonradiative relaxation of optical centers and realize excellent thermal stability. Unfortunately, few host materials simultaneously possess aforementioned structural features. Herein, we confirm that Sr3(PO4)2 (SPO) phosphate possesses high structural rigidity (Debye temperature, ΘD = 559 K) and large bandgap (Eg = 8.313 eV) by density functional theory calculations. As expected, Eu2+-doped SPO purple-blue phosphors show extraordinary thermal stability. At 150/300 °C, SPO:5%Eu2+ presents emission loss of only 4%/8% and a predicated ultrahigh thermal quenching temperature of 973 °C. The most strikingly discoveries here are that thermal-induced emission compensation appears within two distinct Eu2+ sites of SPO host. The outstanding thermal stability, on one hand, is attributed to rigid structure and large bandgap of host that inhibits nonradiative relaxation of Eu2+ and on the other hand, the emission self-compensation of Eu2+. Benefiting from synergistic effect of emission compensation and nonradiative transition restriction of Eu2+, as-prepared SPO:5%Eu2+ purple-blue phosphor not only presents superior thermal stability but also high internal quantum efficiency of 95.1% and excellent hydrolysis resistant. Some advanced applications are explored including white LED lighting and wide-color-gamut display. Our work provides in-deep insights into structure-property relationships of thermally stable phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号