首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The temporal evolution and spatial distribution of C2 molecules produced by laser ablation of a graphite target is studied using optical emission spectroscopy, dynamic imaging and laser-induced fluorescence (LIF) investigations. We observe peculiar bifurcation of carbon plume into two parts; stationary component close to the target surface and a component moving away from the target surface which splits further in two parts as the plume expands. The two distinct plumes are attributed to recombination of carbon species and formation of nanoparticles. The molecular carbon C2 moves with a faster velocity and dies out at ~ 800 ns whereas the clusters of nanoparticle move with a slower velocity due to their higher mass and can be observed even after 1600 ns. C2 molecules in the d3Πg state were probed for laser-induced fluorescence during ablation of graphite using the Swan (0,0) band at 516.5 nm. The fluorescence spectrum and images of fluorescence d3Πg − a3Πu(0,1)(λ = 563.5 nm) are recorded using a spectrograph attached to the ICCD camera. To get absolute ground state C2 density from fluorescence images, the images are calibrated using complimentary absorption experiment. This study qualitatively helps to get optimum conditions for nanoparticle formation using the laser ablation of graphite target and hence deducing optimum conditions for thin film deposition.  相似文献   

2.
The electrochemical deposition of carbon films on a nickel substrate was carried out through anodic oxidation of calcium acetylide dissolved in a LiCl–KCl–CaCl2 melt at 823 K. Continuous and tenacious carbon films were prepared by a two-stage anodically potentiostatic deposition at a fast rate, and characterized by SEM, Raman spectroscopy, XRD and XPS. The results show the carbon films composed of micron-sized particles with graphitized and amorphous phases containing a mixture of sp3 and sp2 carbon. The cyclic voltammetry behavior of acetylide anion on graphite and nickel electrodes indicated that C22  ions are oxidized more favorably on the nickel substrate due to the anodic depolarization from nickel carburization.  相似文献   

3.
Ions of gold monomer and clusters emitted from a liquid metal ion source were mass-selected, and deposited on cleaved HOPG (highly oriented pyrolytic graphite) surfaces and on amorphous carbon thin films at room temperature with the impinging energy E i from 0 to 500 eV. The coverage of deposited ions were 1/100 and 1/1000 monolayers on HOPG surfaces and 1/3 monolayers on carbon films. Scanning tunneling microscopy of the HOPG surfaces deposited with low impinging energy (E i<50 eV) revealed that large clusters with diameters ranging from 2 to 5 nm and height of 1–2 layers were present instead of isolated monomers and original clusters. When E i was higher than 100 eV, HOPG surfaces were damaged and only bumpy surfaces were observed by STM. Transmission electron microscopy of Au+-deposited carbon films showed the formation of clusters with diameter 0.5–20 nm, depending on the E i and the time elapsed after deposition.  相似文献   

4.
Lithium deposition on graphite anodes is considered as a main reason for failures and safety for lithium ion batteries (LIB). Different amounts of carbon coating on the surface of natural graphite are used in this work to suppress the amount of lithium deposited at − 10 °C. Pulse polarization experiments reveal relative polarization of graphite anodes at various temperatures and show that lithium deposition is accelerated at lowered temperatures. Electrochemical experiments, along with photographs, scanning electron microscopy (SEM) images and ex-situ X-ray diffraction (XRD) data suggest that carbon coating not only suppresses the lithium deposition but also enhances the formation of LiC6 at − 10 °C. The homogeneous potential profile on the graphite surface attained by the carbon coating explains such an improved low temperature performance, as it allows efficient Solid Electrolyte Interface (SEI) film formation, which is a prerequisite for safety LIB.  相似文献   

5.
Drastic changes in the bonding are found in amorphous hydrogenated carbon nitride (a-CNx:H) film as a function of nitrogen concentration (or N/C ratio). The total C-sp3 fraction and hardness shows a sharp decrease (at N/C = 0.40) whereas optical band gap and resistivity shows a gradual increase as nitrogen concentration increases from 0.07 to 0.58. Raman spectrum of a-CNx:H film is fitted with both Gaussian (integrated intensity ratios are used instead of the height ratios of the Lorentzian (D mode)) and Breit–Wigner–Fano (BWF, G Mode) method for a comparative study of optical properties and crystalline size of the graphite domain. Visible Raman (488 nm) spectroscopy finds that the in-plane crystalline size of graphite domains (La) is increased (from 34 to 38 Å) with nitrogen incorporation. Optical band gap of a-CNx:H solid measured by means of ellipsometry differs from the one obtained from Raman spectroscopy. In addition, we propose a simple extension of the existing band gap model to obtain the optical band gap of a-CNx:H film from Raman spectrum. Our estimation agrees well with the experimental value.  相似文献   

6.
Ruthenium(0) composite hydrogenated amorphous carbon nitride (Ru/a-CNx:H) films were deposition on single crystal silicon (1 0 0) substrate by electrochemical deposition technique with acetonitrile as carbon source, and Ru3(CO)12 as dopant. In the deposited progress, the Si (1 0 0) acted as anode. The relative atomic ratio of Ru/N/C was about 0.28/0.33/1, and Ru nanocrystalline particles about 8 nm were homogeneously dispersed into the amorphous carbon matrix. After doping Ru into a-CNx:H films, the conductivity of the films were evidently improved and the resistivity drastically decrease from 108 Ω cm to about 100 Ω cm.  相似文献   

7.
Neutral antimony clusters produced by a gas aggregation source have been deposited at room temperature on thin films of amorphous carbon and cleavage surfaces (0001) of graphite. Antimony islands generated from different mean size distributions of preformed clusters Sbn(n = 4, 90, 150, 250, 600, 2000) have been investigated by transmission electron microscopy. Only compact islands have been observed on amorphous carbon, whereas an evolution from compact to dendritic shapes occurs on graphite substrate as the mean size of the deposited clusters increases. For clusters containing more than 150 atoms the dendritic islands exhibit a fractal character whose dimensional analysis yields a fractal dimension of 1.63 ± 0.07. The different models for island growth are discussed in the light of these results.  相似文献   

8.
Rod-shaped amorphous bulk Ni–Cr–Mo-22 at.%Ta-14 at.%Nb–P alloys resistant to concentrated hydrochloric acids were prepared by copper-mold casting. Alloys of amorphous single phase and mixture of nanocrystalline phases in the amorphous matrix were all spontaneously passive in 6 and 12 M HCl and were immune to corrosion in 6 M HCl, although the corrosion weight loss was detected for heterogeneous alloys in 12 M HCl. Spontaneous passivation is due to presence of stable air-formed films in which chromium was particularly concentrated in addition to enrichment of tantalum and niobium. The angle resolved X-ray photoelectron spectroscopy revealed that chromium and molybdenum are rich in the inner part of the film. The major molybdenum species is in the tetravalent state, although penta- and hexavalent state molybdenum is also included. The high corrosion resistance was interpreted in terms of the high stability of the outer triple oxyhydroxide, Cr1−x−yTaxNbyOz(OH)3+2x+2y−2z, and the effective diffusion barrier of the inner Mo4+ and Cr3+ oxide layer. Contribution to the Fall Meeting of the European Materials Research Society, Symposium D: 9th International Symposium on Electrochemical/Chemical Reactivity of Metastable Materials, Warsaw, 17th-21st September, 2007.  相似文献   

9.
Using ionic source assistant, Ti and N co‐doped amorphous C (α‐C:N:Ti) thin films were prepared by pulse cathode arc technique. Microstructure, composition, elemental distribution, morphology, and mechanical properties of α‐C:N:Ti films were investigated in dependence of nitrogen source, pulse frequency, and target current by Raman spectroscopy, X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, nanoindentation, and surface profilometer. The results show the presence of titanium carbide and nitride in a‐C:N:Ti films. The α‐C:N+:Ti film (6 Hz, 60 A) shows the smaller size and the higher disordering degree of Csp2 clusters. The α‐C:N+:Ti films present smoother surface and smaller particle size than for α‐C:N2:Ti films. N ions facilitate the formation of N‐sp3C bonds in the α‐C:N+:Ti films, and α‐C:N+:Ti (10 Hz, 80 A) film possesses the more graphite‐like N bonds. Higher hardness and lower residual stress present in the α‐C:N2:Ti (10 Hz, 80 A) film.  相似文献   

10.
CuCrO2 and CuCrO2:Mn thin films were prepared on sapphire substrates by chemical solution deposition method. The effects of the annealing temperatures and Mn concentration on the structural, electrical and optical properties were investigated. The X-ray diffraction measurement was used to confirm the c-axis orientation of CuCrO2 and CuCrO2:Mn thin films. The maximum transmittances of the films in the visible region are about 65% with direct band gaps of 3.25 eV. All films showed the p-type conduction and semiconductor behavior. The electrical conductivity decreases rapidly with the increase of Mn content, the maximum of the electrical conductivity of 1.35 × 10−2 S cm−1 is CuCrO2 film deposited at 600 °C temperature in 10−3 Torr vacuum, which is about four orders of magnitude higher than that of the Mn-doped CuCrO2 thin film. The energy band of the samples is constructed based on the grain-boundary scattering in order to investigate the conduction mechanism. Moreover, the samples exhibit a clear ferromagnetism, which was likely ascribed to originating from the double-exchange interaction between the Mn3+ and Cr3+ ions.  相似文献   

11.
CuCrO2 and CuAl0.5Cr0.5O2 thin films were prepared by sol–gel processing and subsequent two-step annealing in air and inert gas atmosphere. Phase pure films with delafossite structure were obtained by adjusting the respective temperatures. The related phase development strongly affects the optical and electrical performance, giving leeway for optimization. The resulting CuCrO2 (16 Ωcm, transmittance 21%) and CuAl0.5Cr0.5O2 (11 Ωcm, transmittance 49%) films showed p-type conductivity by their positive Seebeck coefficients. The microstructure of the systems was characterized by scanning and transmission electron microscopy and correlated to the growth of different crystalline phases during the annealing steps. Thereby, crystal thermodynamics also affects the respective film performance, alleviating delafossite formation from the amorphous phase.  相似文献   

12.
an ensemble of properly distanced micro mercury film electrodes (MMFE) was used in cyclic and anodic stripping voltammetry. the experimental results were compared with the anodic stripping theory, and the agreement was found to be satisfactory. The MMFE peaks (calculated per unit area) were higher, thinner and shifted towards more negative potentials compared with the large area mercury film electrode (LAMFE) peaks.The initial graphite electrode consisted of 65 independent micro-discs forming a circle, and was prepared from carbon fibres 4.66 μm in radius. The graphite multi-micro-disc electrode was quantitatively checked in a Fe(CN)63? solution under both chronoamperometric and voltammetric conditions. The deposition and oxidation of mercury is discussed also.  相似文献   

13.
采用TG、XRD、SEM、EDAX和脉冲色谱技术,研究了Ni/Al2O3和Ni/ARM催化剂的甲烷脱氢积炭反应特征。结果指出,甲烷脱氢反应的积炭行为与催化剂上镍的分散状态有关。Ni-2催化剂上Ni的分散度小,晶粒大,甲烷脱氢形成的炭丝较长,主要以石墨型炭游离存在:而Ni/ARM催化剂上Ni的分散度大,镍晶粒小,甲烷脱氢形成的炭丝较短,主要覆盖在催化剂活性中心表面。甲烷脱氢主要产生无定型炭和石墨型炭,其中无定型炭可以被CO2部分消除。在催化剂制备时,通过提高镍在催化剂表面的分散度,减小镍的晶粒大小,不仅可以提高催化剂的活性,而且可以提高CO2对积炭的消炭性能。  相似文献   

14.
Liu  Yan  Xu  Zhanlin  Cheng  Tiexin  Zhou  Guangdong  Wang  Junxia  Li  Wenxing  Bi  Yingli  Zhen  Kaiji 《Kinetics and Catalysis》2002,43(4):522-527
The amount of carbon deposited on hexaaluminate LaNiAl11O19 catalyst in CH4 decomposition and CO2 reforming of methane was determined by means of thermogravimetric analysis (TGA). The properties of carbon formed on the catalysts were characterized by X-ray photoelectron spectroscopy (XPS), temperature-programmed CO2 reaction (TPR-CO2), and temperature-programmed oxidation (TPO) techniques. The experimental results showed that hexaaluminate LaNiAl11O19 catalyst possessed high resistance to carbon deposition in CO2 reforming of methane to synthesis gas at high temperatures, and CO2 played an important role in eliminating carbon during the reaction. At least two forms of the deposited carbon, graphite and carbide, were produced during methane reforming with CO2.  相似文献   

15.
Nanostructured copper-chromium oxides were prepared by the sol–gel process (SG) and were characterised by elemental analysis, thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and by their activity in methane combustion. A comparative study was made with copper chromites commercial catalysts. The as-synthesised copper chromites sample exhibited higher specific surface area (248 m2 g−1) with respect to commercial solids (42 m2 g−1). The surface quantitative analysis evidenced a Cr6+ enrichment for the SG catalyst (Cr6+/Cr3+=0.56) with respect to commercial sample (0.39), while the ratio of copper species Cu2+/(Cu° + Cu+) was the same in both solids. Catalytic activity of SG solids in methane combustion was found to be comparable to that of Pt/Al2O3 and superior to that of commercial copper chromites tested under the same conditions.  相似文献   

16.
Pulsed plasma enhanced chemical vapor deposition (pulsed PECVD) and pyrolytic chemical vapor deposition (pyrolyric CVD) of fluorocarbon films from hexafluoropropylene oxide (HFPO) have demonstrated the ability to molecularly design film architecture. Film structures ranging from highly amorphous crosslinked matrices to linear perfluoroalkyl chain crystallites can be established by reducing the modulation frequency of plasma discharge in plasma activated deposition and by eventually shifting mechanistically from an electrically activated to a thermally activated process. X-ray photoelectron spectroscopy (XPS) showed CF2 content increasing from 39–65 mol%. Fourier transform infrared spectroscopy (FTIR) showed an increasing resolution between the symmetric and asymmetric CF2 stretches, and a reduction in the intensity of the amorphous PTFE and CF3 bands. High-resolution solid-state 19F nuclear magnetic resonance spectroscopy (NMR) revealed an increasing CF2CF2CF2 character, with the pyrolytic CVD film much like bulk poly(tetrafluoroethylene) (PTFE). X-ray diffraction (XRD) patterns evidenced an increase in crystallinity, with the pyrolytic CVD film showing a characteristic peak at 2 = 18° representing the (100) plane of the hexagonal structure of crystalline PTFE above 19°C.  相似文献   

17.
The cyclopentadienylchromium carbonyl thiocarbonyls Cp2Cr2(CS)2(CO)n (n = 4, 3, 2, 1) have been studied by density functional theory using the B3LYP and BP86 functionals. The lowest energy Cp2Cr2(CS)2(CO)4 structure can be derived from the experimentally characterized unbridged Cp2Cr2(CO)6 structure by replacing the two terminal carbonyl groups furthest from the Cr-Cr bond with two terminal CS groups. The two lowest energy Cp2Cr2(CS)2(CO)3 structures have a single four-electron donor η2-μ-CS group and a formal Cr-Cr single bond of length ∼3.1 Å. In contrast to the carbonyl analogue Cp2Cr2(CO)5 these Cp2Cr2(CS)2(CO)3 structures are viable with respect to disproportionation into Cp2Cr2(CS)2(CO)4 and Cp2Cr2(CS)2(CO)2 and thus are promising synthetic targets. The lowest energy Cp2Cr2(CS)2(CO)2 structures have all two-electron donor CO and CS groups and short CrCr distances around ∼2.3 Å suggesting the formal triple bonds required to give the chromium atoms the favored 18-electron configurations. These Cp2Cr2(CS)2(CO)2 structures are closely related to the known structure for Cp2Cr2(CO)4. In addition, several doubly bridged structures with four-electron donor η2-μ-CS bridges are found for Cp2Cr2(CS)2(CO)2 at higher energies. The global minimum Cp2Cr2(CS)2(CO) structure is a triply bridged triplet with a CrCr triple bond (2.299 Å by BP86). A higher energy singlet Cp2Cr2(CS)2(CO) structure has a shorter Cr-Cr distance of 2.197 Å (BP86) suggesting the formal quadruple bond required to give each chromium atom the favored 18-electron configuration.  相似文献   

18.
Although, in the carbon family, graphite is the most thermodynamically stable allotrope, conversion of other carbon allotropes, even amorphous carbons, into graphite is extremely hard. We report a simple electrochemical route for the graphitization of amorphous carbons through cathodic polarization in molten CaCl2 at temperatures of about 1100 K, which generates porous graphite comprising petaloid nanoflakes. This nanostructured graphite allows fast and reversible intercalation/deintercalation of anions, promising a superior cathode material for batteries. In a Pyr14TFSI ionic liquid, it exhibits a specific discharge capacity of 65 and 116 mAh g−1 at a rate of 1800 mA g−1 when charged to 5.0 and 5.25 V vs. Li/Li+, respectively. The capacity remains fairly stable during cycling and decreases by only about 8 % when the charge/discharge rate is increased to 10000 mA g−1 during cycling between 2.25 and 5.0 V.  相似文献   

19.
Alloying behavior of gold into nm-sized amorphous antimony (a-Sb) clusters has been studied by transmission electron microscopy (TEM), employing gold clusters in contact with a-Sb clusters. In order to produce gold clusters on individual a-Sb clusters, a-Sb clusters on an amorphous carbon film were cooled down to 96 K, and gold was then condenced on the film. When gold clusters in contact with a-Sb clusters are gradually heated from 96 to 290 K, dissolution of gold into a-Sb clusters sets in around 200K and clusters of a-(Sb-Au) alloys are produced. With increasing annealing temperture, more gold is absorbed into individual a-Sb clusters, and when the gold concentration in a-(Sb-Au) clusters reaches to the stoichiometric composition of AuSb2, these amorphous clusters crystallize into AuSb2 clusters. The crystallization temperature decreases with decreasing size of initial a-Sb clusters.  相似文献   

20.
Temperature-programmed reduction by hydrogen, temperature-programmed desorption of O2, local X-ray spectral analysis, and scanning electron microscopy are used to study redox processes occurring on the Ni–Cr2O3/MgO and Ni/MgO catalysts for carbon dioxide reforming of methane. The reduction of Ni/MgO leads to the formation of nickel clusters distributed over the surface of MgO. During the reduction of NiO–Cr2O3/MgO, chromates are transformed into chromites, and then nickel is formed by the reduction of spinel NiCr2O4. Reoxidation leads to the oxidized structures NiO, NiCr2O4, and NiCrO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号